GCC Middle and Back End API Reference
sparseset.h
Go to the documentation of this file.
1 /* SparseSet implementation.
2  Copyright (C) 2007-2013 Free Software Foundation, Inc.
3  Contributed by Peter Bergner <bergner@vnet.ibm.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20 
21 #ifndef GCC_SPARSESET_H
22 #define GCC_SPARSESET_H
23 
24 /* Implementation of the Briggs and Torczon sparse set representation.
25  The sparse set representation was first published in:
26 
27  "An Efficient Representation for Sparse Sets",
28  ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.
29 
30  The sparse set representation is suitable for integer sets with a
31  fixed-size universe. Two vectors are used to store the members of
32  the set. If an element I is in the set, then sparse[I] is the
33  index of I in the dense vector, and dense[sparse[I]] == I. The dense
34  vector works like a stack. The size of the stack is the cardinality
35  of the set.
36 
37  The following operations can be performed in O(1) time:
38 
39  * clear : sparseset_clear
40  * cardinality : sparseset_cardinality
41  * set_size : sparseset_size
42  * member_p : sparseset_bit_p
43  * add_member : sparseset_set_bit
44  * remove_member : sparseset_clear_bit
45  * choose_one : sparseset_pop
46 
47  Additionally, the sparse set representation supports enumeration of
48  the members in O(N) time, where n is the number of members in the set.
49  The members of the set are stored cache-friendly in the dense vector.
50  This makes it a competitive choice for iterating over relatively sparse
51  sets requiring operations:
52 
53  * forall : EXECUTE_IF_SET_IN_SPARSESET
54  * set_copy : sparseset_copy
55  * set_intersection : sparseset_and
56  * set_union : sparseset_ior
57  * set_difference : sparseset_and_compl
58  * set_disjuction : (not implemented)
59  * set_compare : sparseset_equal_p
60 
61  NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET.
62  The iterator is updated for it.
63 
64  Based on the efficiency of these operations, this representation of
65  sparse sets will often be superior to alternatives such as simple
66  bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees,
67  hash tables, linked lists, etc., if the set is sufficiently sparse.
68  In the LOPLAS paper the cut-off point where sparse sets became faster
69  than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the
70  size of the universe of the set).
71 
72  Because the set universe is fixed, the set cannot be resized. For
73  sparse sets with initially unknown size, linked-list bitmaps are a
74  better choice, see bitmap.h.
75 
76  Sparse sets storage requirements are relatively large: O(U) with a
77  larger constant than sbitmaps (if the storage requirement for an
78  sbitmap with universe U is S, then the storage required for a sparse
79  set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S).
80  Accessing the sparse vector is not very cache-friendly, but iterating
81  over the members in the set is cache-friendly because only the dense
82  vector is used. */
83 
84 /* Data Structure used for the SparseSet representation. */
85 
86 #define SPARSESET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
87 #define SPARSESET_ELT_TYPE unsigned HOST_WIDEST_FAST_INT
88 
89 typedef struct sparseset_def
90 {
91  SPARSESET_ELT_TYPE *dense; /* Dense array. */
92  SPARSESET_ELT_TYPE *sparse; /* Sparse array. */
93  SPARSESET_ELT_TYPE members; /* Number of elements. */
94  SPARSESET_ELT_TYPE size; /* Maximum number of elements. */
95  SPARSESET_ELT_TYPE iter; /* Iterator index. */
96  unsigned char iter_inc; /* Iteration increment amount. */
97  bool iterating;
98  SPARSESET_ELT_TYPE elms[2]; /* Combined dense and sparse arrays. */
99 } *sparseset;
100 
101 #define sparseset_free(MAP) free(MAP)
102 extern sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms);
103 extern void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE);
104 extern void sparseset_copy (sparseset, sparseset);
108 extern bool sparseset_equal_p (sparseset, sparseset);
109 
110 /* Operation: S = {}
111  Clear the set of all elements. */
112 
113 static inline void
115 {
116  s->members = 0;
117  s->iterating = false;
118 }
119 
120 /* Return the number of elements currently in the set. */
121 
122 static inline SPARSESET_ELT_TYPE
124 {
125  return s->members;
126 }
127 
128 /* Return the maximum number of elements this set can hold. */
129 
130 static inline SPARSESET_ELT_TYPE
132 {
133  return s->size;
134 }
135 
136 /* Return true if e is a member of the set S, otherwise return false. */
137 
138 static inline bool
139 sparseset_bit_p (sparseset s, SPARSESET_ELT_TYPE e)
140 {
141  SPARSESET_ELT_TYPE idx;
142 
143  gcc_checking_assert (e < s->size);
144 
145  idx = s->sparse[e];
146 
147  return idx < s->members && s->dense[idx] == e;
148 }
149 
150 /* Low level insertion routine not meant for use outside of sparseset.[ch].
151  Assumes E is valid and not already a member of the set S. */
152 
153 static inline void
154 sparseset_insert_bit (sparseset s, SPARSESET_ELT_TYPE e, SPARSESET_ELT_TYPE idx)
155 {
156  s->sparse[e] = idx;
157  s->dense[idx] = e;
158 }
159 
160 /* Operation: S = S + {e}
161  Insert E into the set S, if it isn't already a member. */
162 
163 static inline void
164 sparseset_set_bit (sparseset s, SPARSESET_ELT_TYPE e)
165 {
166  if (!sparseset_bit_p (s, e))
167  sparseset_insert_bit (s, e, s->members++);
168 }
169 
170 /* Return and remove the last member added to the set S. */
171 
172 static inline SPARSESET_ELT_TYPE
174 {
175  SPARSESET_ELT_TYPE mem = s->members;
176 
177  gcc_checking_assert (mem != 0);
178 
179  s->members = mem - 1;
180  return s->dense[mem];
181 }
182 
183 static inline void
185 {
186  s->iter = 0;
187  s->iter_inc = 1;
188  s->iterating = true;
189 }
190 
191 static inline bool
193 {
194  if (s->iterating && s->iter < s->members)
195  return true;
196  else
197  return s->iterating = false;
198 }
199 
200 static inline SPARSESET_ELT_TYPE
202 {
203  return s->dense[s->iter];
204 }
205 
206 static inline void
208 {
209  s->iter += s->iter_inc;
210  s->iter_inc = 1;
211 }
212 
213 #define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER) \
214  for (sparseset_iter_init (SPARSESET); \
215  sparseset_iter_p (SPARSESET) \
216  && (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \
217  sparseset_iter_next (SPARSESET))
218 
219 #endif /* GCC_SPARSESET_H */