GCC Middle and Back End API Reference
Main Page
Namespaces
Data Structures
Files
File List
Globals
real.h
Go to the documentation of this file.
1
/* Definitions of floating-point access for GNU compiler.
2
Copyright (C) 1989-2013 Free Software Foundation, Inc.
3
4
This file is part of GCC.
5
6
GCC is free software; you can redistribute it and/or modify it under
7
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
10
11
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12
WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
for more details.
15
16
You should have received a copy of the GNU General Public License
17
along with GCC; see the file COPYING3. If not see
18
<http://www.gnu.org/licenses/>. */
19
20
#ifndef GCC_REAL_H
21
#define GCC_REAL_H
22
23
#include "
machmode.h
"
24
25
/* An expanded form of the represented number. */
26
27
/* Enumerate the special cases of numbers that we encounter. */
28
enum
real_value_class
{
29
rvc_zero
,
30
rvc_normal
,
31
rvc_inf
,
32
rvc_nan
33
};
34
35
#define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG)
36
#define EXP_BITS (32 - 6)
37
#define MAX_EXP ((1 << (EXP_BITS - 1)) - 1)
38
#define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
39
#define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
40
41
struct
GTY
(())
real_value
{
42
/* Use the same underlying type for all bit-fields, so as to make
43
sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
44
be miscomputed. */
45
unsigned
int
/* ENUM_BITFIELD (real_value_class) */
cl : 2;
46
unsigned
int
decimal : 1;
47
unsigned
int
sign : 1;
48
unsigned
int
signalling : 1;
49
unsigned
int
canonical : 1;
50
unsigned
int
uexp :
EXP_BITS
;
51
unsigned
long
sig[
SIGSZ
];
52
};
53
54
#define REAL_EXP(REAL) \
55
((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
56
- (1 << (EXP_BITS - 1)))
57
#define SET_REAL_EXP(REAL, EXP) \
58
((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
59
60
/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
61
needs to be a macro. We do need to continue to have a structure tag
62
so that other headers can forward declare it. */
63
#define REAL_VALUE_TYPE struct real_value
64
65
/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
66
consecutive "w" slots. Moreover, we've got to compute the number of "w"
67
slots at preprocessor time, which means we can't use sizeof. Guess. */
68
69
#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
70
#define REAL_WIDTH \
71
(REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
72
+ (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0))
/* round up */
73
74
/* Verify the guess. */
75
extern
char
test_real_width
76
[
sizeof
(
REAL_VALUE_TYPE
) <=
REAL_WIDTH
*
sizeof
(
HOST_WIDE_INT
) ? 1 : -1];
77
78
/* Calculate the format for CONST_DOUBLE. We need as many slots as
79
are necessary to overlay a REAL_VALUE_TYPE on them. This could be
80
as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
81
82
A number of places assume that there are always at least two 'w'
83
slots in a CONST_DOUBLE, so we provide them even if one would suffice. */
84
85
#if REAL_WIDTH == 1
86
# define CONST_DOUBLE_FORMAT "ww"
87
#else
88
# if REAL_WIDTH == 2
89
# define CONST_DOUBLE_FORMAT "ww"
90
# else
91
# if REAL_WIDTH == 3
92
# define CONST_DOUBLE_FORMAT "www"
93
# else
94
# if REAL_WIDTH == 4
95
# define CONST_DOUBLE_FORMAT "wwww"
96
# else
97
# if REAL_WIDTH == 5
98
# define CONST_DOUBLE_FORMAT "wwwww"
99
# else
100
# if REAL_WIDTH == 6
101
# define CONST_DOUBLE_FORMAT "wwwwww"
102
# else
103
#error "REAL_WIDTH > 6 not supported"
104
# endif
105
# endif
106
# endif
107
# endif
108
# endif
109
#endif
110
111
112
/* Describes the properties of the specific target format in use. */
113
struct
real_format
114
{
115
/* Move to and from the target bytes. */
116
void (*
encode
) (
const
struct
real_format
*,
long
*,
117
const
REAL_VALUE_TYPE
*);
118
void (*
decode
) (
const
struct
real_format
*,
REAL_VALUE_TYPE
*,
119
const
long
*);
120
121
/* The radix of the exponent and digits of the significand. */
122
int
b
;
123
124
/* Size of the significand in digits of radix B. */
125
int
p
;
126
127
/* Size of the significant of a NaN, in digits of radix B. */
128
int
pnan
;
129
130
/* The minimum negative integer, x, such that b**(x-1) is normalized. */
131
int
emin
;
132
133
/* The maximum integer, x, such that b**(x-1) is representable. */
134
int
emax
;
135
136
/* The bit position of the sign bit, for determining whether a value
137
is positive/negative, or -1 for a complex encoding. */
138
int
signbit_ro
;
139
140
/* The bit position of the sign bit, for changing the sign of a number,
141
or -1 for a complex encoding. */
142
int
signbit_rw
;
143
144
/* Default rounding mode for operations on this format. */
145
bool
round_towards_zero
;
146
bool
has_sign_dependent_rounding
;
147
148
/* Properties of the format. */
149
bool
has_nans
;
150
bool
has_inf
;
151
bool
has_denorm
;
152
bool
has_signed_zero
;
153
bool
qnan_msb_set
;
154
bool
canonical_nan_lsbs_set
;
155
};
156
157
158
/* The target format used for each floating point mode.
159
Float modes are followed by decimal float modes, with entries for
160
float modes indexed by (MODE - first float mode), and entries for
161
decimal float modes indexed by (MODE - first decimal float mode) +
162
the number of float modes. */
163
extern
const
struct
real_format
*
164
real_format_for_mode
[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1
165
+ MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1];
166
167
#define REAL_MODE_FORMAT(MODE) \
168
(real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \
169
? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \
170
+ (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \
171
: ((MODE) - MIN_MODE_FLOAT)])
172
173
#define FLOAT_MODE_FORMAT(MODE) \
174
(REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \
175
: GET_MODE_INNER (MODE)))
176
177
/* The following macro determines whether the floating point format is
178
composite, i.e. may contain non-consecutive mantissa bits, in which
179
case compile-time FP overflow may not model run-time overflow. */
180
#define MODE_COMPOSITE_P(MODE) \
181
(FLOAT_MODE_P (MODE) \
182
&& FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
183
184
/* Accessor macros for format properties. */
185
#define MODE_HAS_NANS(MODE) \
186
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
187
#define MODE_HAS_INFINITIES(MODE) \
188
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
189
#define MODE_HAS_SIGNED_ZEROS(MODE) \
190
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
191
#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
192
(FLOAT_MODE_P (MODE) \
193
&& FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
194
195
/* True if the given mode has a NaN representation and the treatment of
196
NaN operands is important. Certain optimizations, such as folding
197
x * 0 into 0, are not correct for NaN operands, and are normally
198
disabled for modes with NaNs. The user can ask for them to be
199
done anyway using the -funsafe-math-optimizations switch. */
200
#define HONOR_NANS(MODE) \
201
(MODE_HAS_NANS (MODE) && !flag_finite_math_only)
202
203
/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
204
#define HONOR_SNANS(MODE) (flag_signaling_nans && HONOR_NANS (MODE))
205
206
/* As for HONOR_NANS, but true if the mode can represent infinity and
207
the treatment of infinite values is important. */
208
#define HONOR_INFINITIES(MODE) \
209
(MODE_HAS_INFINITIES (MODE) && !flag_finite_math_only)
210
211
/* Like HONOR_NANS, but true if the given mode distinguishes between
212
positive and negative zero, and the sign of zero is important. */
213
#define HONOR_SIGNED_ZEROS(MODE) \
214
(MODE_HAS_SIGNED_ZEROS (MODE) && flag_signed_zeros)
215
216
/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
217
and the rounding mode is important. */
218
#define HONOR_SIGN_DEPENDENT_ROUNDING(MODE) \
219
(MODE_HAS_SIGN_DEPENDENT_ROUNDING (MODE) && flag_rounding_math)
220
221
/* Declare functions in real.c. */
222
223
/* Binary or unary arithmetic on tree_code. */
224
extern
bool
real_arithmetic
(
REAL_VALUE_TYPE
*,
int
,
const
REAL_VALUE_TYPE
*,
225
const
REAL_VALUE_TYPE
*);
226
227
/* Compare reals by tree_code. */
228
extern
bool
real_compare
(
int
,
const
REAL_VALUE_TYPE
*,
const
REAL_VALUE_TYPE
*);
229
230
/* Determine whether a floating-point value X is infinite. */
231
extern
bool
real_isinf
(
const
REAL_VALUE_TYPE
*);
232
233
/* Determine whether a floating-point value X is a NaN. */
234
extern
bool
real_isnan
(
const
REAL_VALUE_TYPE
*);
235
236
/* Determine whether a floating-point value X is finite. */
237
extern
bool
real_isfinite
(
const
REAL_VALUE_TYPE
*);
238
239
/* Determine whether a floating-point value X is negative. */
240
extern
bool
real_isneg
(
const
REAL_VALUE_TYPE
*);
241
242
/* Determine whether a floating-point value X is minus zero. */
243
extern
bool
real_isnegzero
(
const
REAL_VALUE_TYPE
*);
244
245
/* Compare two floating-point objects for bitwise identity. */
246
extern
bool
real_identical
(
const
REAL_VALUE_TYPE
*,
const
REAL_VALUE_TYPE
*);
247
248
/* Extend or truncate to a new mode. */
249
extern
void
real_convert
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
250
const
REAL_VALUE_TYPE
*);
251
252
/* Return true if truncating to NEW is exact. */
253
extern
bool
exact_real_truncate
(
enum
machine_mode,
const
REAL_VALUE_TYPE
*);
254
255
/* Render R as a decimal floating point constant. */
256
extern
void
real_to_decimal
(
char
*,
const
REAL_VALUE_TYPE
*,
size_t
,
257
size_t
,
int
);
258
259
/* Render R as a decimal floating point constant, rounded so as to be
260
parsed back to the same value when interpreted in mode MODE. */
261
extern
void
real_to_decimal_for_mode
(
char
*,
const
REAL_VALUE_TYPE
*,
size_t
,
262
size_t
,
int
,
enum
machine_mode);
263
264
/* Render R as a hexadecimal floating point constant. */
265
extern
void
real_to_hexadecimal
(
char
*,
const
REAL_VALUE_TYPE
*,
266
size_t
,
size_t
,
int
);
267
268
/* Render R as an integer. */
269
extern
HOST_WIDE_INT
real_to_integer
(
const
REAL_VALUE_TYPE
*);
270
extern
void
real_to_integer2
(
HOST_WIDE_INT
*,
HOST_WIDE_INT
*,
271
const
REAL_VALUE_TYPE
*);
272
273
/* Initialize R from a decimal or hexadecimal string. Return -1 if
274
the value underflows, +1 if overflows, and 0 otherwise. */
275
extern
int
real_from_string
(
REAL_VALUE_TYPE
*,
const
char
*);
276
/* Wrapper to allow different internal representation for decimal floats. */
277
extern
void
real_from_string3
(
REAL_VALUE_TYPE
*,
const
char
*,
enum
machine_mode);
278
279
/* Initialize R from an integer pair HIGH/LOW. */
280
extern
void
real_from_integer
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
281
unsigned
HOST_WIDE_INT
, HOST_WIDE_INT,
int
);
282
283
extern
long
real_to_target_fmt
(
long
*,
const
REAL_VALUE_TYPE
*,
284
const
struct
real_format
*);
285
extern
long
real_to_target
(
long
*,
const
REAL_VALUE_TYPE
*,
enum
machine_mode);
286
287
extern
void
real_from_target_fmt
(
REAL_VALUE_TYPE
*,
const
long
*,
288
const
struct
real_format
*);
289
extern
void
real_from_target
(
REAL_VALUE_TYPE
*,
const
long
*,
290
enum
machine_mode);
291
292
extern
void
real_inf
(
REAL_VALUE_TYPE
*);
293
294
extern
bool
real_nan
(
REAL_VALUE_TYPE
*,
const
char
*,
int
,
enum
machine_mode);
295
296
extern
void
real_maxval
(
REAL_VALUE_TYPE
*,
int
,
enum
machine_mode);
297
298
extern
void
real_2expN
(
REAL_VALUE_TYPE
*,
int
,
enum
machine_mode);
299
300
extern
unsigned
int
real_hash
(
const
REAL_VALUE_TYPE
*);
301
302
303
/* Target formats defined in real.c. */
304
extern
const
struct
real_format
ieee_single_format
;
305
extern
const
struct
real_format
mips_single_format
;
306
extern
const
struct
real_format
motorola_single_format
;
307
extern
const
struct
real_format
spu_single_format
;
308
extern
const
struct
real_format
ieee_double_format
;
309
extern
const
struct
real_format
mips_double_format
;
310
extern
const
struct
real_format
motorola_double_format
;
311
extern
const
struct
real_format
ieee_extended_motorola_format
;
312
extern
const
struct
real_format
ieee_extended_intel_96_format
;
313
extern
const
struct
real_format
ieee_extended_intel_96_round_53_format
;
314
extern
const
struct
real_format
ieee_extended_intel_128_format
;
315
extern
const
struct
real_format
ibm_extended_format
;
316
extern
const
struct
real_format
mips_extended_format
;
317
extern
const
struct
real_format
ieee_quad_format
;
318
extern
const
struct
real_format
mips_quad_format
;
319
extern
const
struct
real_format
vax_f_format
;
320
extern
const
struct
real_format
vax_d_format
;
321
extern
const
struct
real_format
vax_g_format
;
322
extern
const
struct
real_format
real_internal_format
;
323
extern
const
struct
real_format
decimal_single_format
;
324
extern
const
struct
real_format
decimal_double_format
;
325
extern
const
struct
real_format
decimal_quad_format
;
326
extern
const
struct
real_format
ieee_half_format
;
327
extern
const
struct
real_format
arm_half_format
;
328
329
330
/* ====================================================================== */
331
/* Crap. */
332
333
#define REAL_ARITHMETIC(value, code, d1, d2) \
334
real_arithmetic (&(value), code, &(d1), &(d2))
335
336
#define REAL_VALUES_IDENTICAL(x, y) real_identical (&(x), &(y))
337
#define REAL_VALUES_EQUAL(x, y) real_compare (EQ_EXPR, &(x), &(y))
338
#define REAL_VALUES_LESS(x, y) real_compare (LT_EXPR, &(x), &(y))
339
340
/* Determine whether a floating-point value X is infinite. */
341
#define REAL_VALUE_ISINF(x) real_isinf (&(x))
342
343
/* Determine whether a floating-point value X is a NaN. */
344
#define REAL_VALUE_ISNAN(x) real_isnan (&(x))
345
346
/* Determine whether a floating-point value X is negative. */
347
#define REAL_VALUE_NEGATIVE(x) real_isneg (&(x))
348
349
/* Determine whether a floating-point value X is minus zero. */
350
#define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x))
351
352
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
353
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \
354
real_to_target (OUT, &(IN), \
355
mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0))
356
357
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
358
real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0))
359
360
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
361
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
362
((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0)))
363
364
#define REAL_VALUE_FROM_INT(r, lo, hi, mode) \
365
real_from_integer (&(r), mode, lo, hi, 0)
366
367
#define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \
368
real_from_integer (&(r), mode, lo, hi, 1)
369
370
/* Real values to IEEE 754 decimal floats. */
371
372
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
373
#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
374
real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0))
375
376
#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
377
real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0))
378
379
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
380
#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
381
((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0)))
382
383
extern
REAL_VALUE_TYPE
real_value_truncate
(
enum
machine_mode,
384
REAL_VALUE_TYPE
);
385
386
#define REAL_VALUE_TO_INT(plow, phigh, r) \
387
real_to_integer2 (plow, phigh, &(r))
388
389
extern
REAL_VALUE_TYPE
real_value_negate
(
const
REAL_VALUE_TYPE
*);
390
extern
REAL_VALUE_TYPE
real_value_abs
(
const
REAL_VALUE_TYPE
*);
391
392
extern
int
significand_size
(
enum
machine_mode);
393
394
extern
REAL_VALUE_TYPE
real_from_string2
(
const
char
*,
enum
machine_mode);
395
396
#define REAL_VALUE_ATOF(s, m) \
397
real_from_string2 (s, m)
398
399
#define CONST_DOUBLE_ATOF(s, m) \
400
CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m)
401
402
#define REAL_VALUE_FIX(r) \
403
real_to_integer (&(r))
404
405
/* ??? Not quite right. */
406
#define REAL_VALUE_UNSIGNED_FIX(r) \
407
real_to_integer (&(r))
408
409
/* ??? These were added for Paranoia support. */
410
411
/* Return floor log2(R). */
412
extern
int
real_exponent
(
const
REAL_VALUE_TYPE
*);
413
414
/* R = A * 2**EXP. */
415
extern
void
real_ldexp
(
REAL_VALUE_TYPE
*,
const
REAL_VALUE_TYPE
*,
int
);
416
417
/* **** End of software floating point emulator interface macros **** */
418
419
/* Constant real values 0, 1, 2, -1 and 0.5. */
420
421
extern
REAL_VALUE_TYPE
dconst0
;
422
extern
REAL_VALUE_TYPE
dconst1
;
423
extern
REAL_VALUE_TYPE
dconst2
;
424
extern
REAL_VALUE_TYPE
dconstm1
;
425
extern
REAL_VALUE_TYPE
dconsthalf
;
426
427
#define dconst_e() (*dconst_e_ptr ())
428
#define dconst_third() (*dconst_third_ptr ())
429
#define dconst_sqrt2() (*dconst_sqrt2_ptr ())
430
431
/* Function to return the real value special constant 'e'. */
432
extern
const
REAL_VALUE_TYPE
*
dconst_e_ptr
(
void
);
433
434
/* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
435
extern
const
REAL_VALUE_TYPE
*
dconst_third_ptr
(
void
);
436
437
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
438
extern
const
REAL_VALUE_TYPE
*
dconst_sqrt2_ptr
(
void
);
439
440
/* Function to return a real value (not a tree node)
441
from a given integer constant. */
442
REAL_VALUE_TYPE
real_value_from_int_cst
(
const_tree
,
const_tree
);
443
444
/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */
445
#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \
446
((to) = *CONST_DOUBLE_REAL_VALUE (from))
447
448
/* Return a CONST_DOUBLE with value R and mode M. */
449
#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \
450
const_double_from_real_value (r, m)
451
extern
rtx
const_double_from_real_value
(
REAL_VALUE_TYPE
,
enum
machine_mode);
452
453
/* Replace R by 1/R in the given machine mode, if the result is exact. */
454
extern
bool
exact_real_inverse
(
enum
machine_mode,
REAL_VALUE_TYPE
*);
455
456
/* Return true if arithmetic on values in IMODE that were promoted
457
from values in TMODE is equivalent to direct arithmetic on values
458
in TMODE. */
459
bool
real_can_shorten_arithmetic
(
enum
machine_mode,
enum
machine_mode);
460
461
/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */
462
extern
tree
build_real
(
tree
,
REAL_VALUE_TYPE
);
463
464
/* Calculate R as the square root of X in the given machine mode. */
465
extern
bool
real_sqrt
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
466
const
REAL_VALUE_TYPE
*);
467
468
/* Calculate R as X raised to the integer exponent N in mode MODE. */
469
extern
bool
real_powi
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
470
const
REAL_VALUE_TYPE
*,
HOST_WIDE_INT
);
471
472
/* Standard round to integer value functions. */
473
extern
void
real_trunc
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
474
const
REAL_VALUE_TYPE
*);
475
extern
void
real_floor
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
476
const
REAL_VALUE_TYPE
*);
477
extern
void
real_ceil
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
478
const
REAL_VALUE_TYPE
*);
479
extern
void
real_round
(
REAL_VALUE_TYPE
*,
enum
machine_mode,
480
const
REAL_VALUE_TYPE
*);
481
482
/* Set the sign of R to the sign of X. */
483
extern
void
real_copysign
(
REAL_VALUE_TYPE
*,
const
REAL_VALUE_TYPE
*);
484
485
/* Check whether the real constant value given is an integer. */
486
extern
bool
real_isinteger
(
const
REAL_VALUE_TYPE
*c,
enum
machine_mode mode);
487
488
/* Write into BUF the maximum representable finite floating-point
489
number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
490
float string. BUF must be large enough to contain the result. */
491
extern
void
get_max_float
(
const
struct
real_format
*,
char
*,
size_t
);
492
#endif
/* ! GCC_REAL_H */
gcc
real.h
Generated by
1.8.1.1