GCC Middle and Back End API Reference
ree.c File Reference

Data Structures

struct  ext_cand
struct  ext_modified
struct  ext_state

Typedefs

typedef struct ext_cand ext_cand
typedef struct ext_state ext_state

Enumerations

enum  ext_modified_kind { EXT_MODIFIED_NONE, EXT_MODIFIED_ZEXT, EXT_MODIFIED_SEXT }

Functions

static bool combine_set_extension ()
static bool transform_ifelse ()
static struct df_linkget_defs ()
static bool is_cond_copy_insn ()
static bool make_defs_and_copies_lists (rtx extend_insn, const_rtx set_pat, ext_state *state)
static bool merge_def_and_ext ()
static bool combine_reaching_defs ()
static void add_removable_extension (const_rtx expr, rtx insn, vec< ext_cand > *insn_list, unsigned *def_map)
static vec< ext_candfind_removable_extensions ()
static void find_and_remove_re ()
static unsigned int rest_of_handle_ree ()
static bool gate_handle_ree ()
rtl_opt_passmake_pass_ree ()

Variables

static int max_insn_uid

Typedef Documentation

typedef struct ext_cand ext_cand
@verbatim Redundant Extension Elimination pass for the GNU compiler.

Copyright (C) 2010-2013 Free Software Foundation, Inc. Contributed by Ilya Enkovich (ilya..nosp@m.enko.nosp@m.vich@.nosp@m.inte.nosp@m.l.com)

Based on the Redundant Zero-extension elimination pass contributed by Sriraman Tallam (tmsri.nosp@m.ram@.nosp@m.googl.nosp@m.e.co.nosp@m.m) and Silvius Rus (rus@g.nosp@m.oogl.nosp@m.e.com).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see http://www.gnu.org/licenses/.

Problem Description :
   --------------------
   This pass is intended to remove redundant extension instructions.
   Such instructions appear for different reasons.  We expect some of
   them due to implicit zero-extension in 64-bit registers after writing
   to their lower 32-bit half (e.g. for the x86-64 architecture).
   Another possible reason is a type cast which follows a load (for
   instance a register restore) and which can be combined into a single
   instruction, and for which earlier local passes, e.g. the combiner,
   weren't able to optimize.

   How does this pass work  ?
   --------------------------

   This pass is run after register allocation.  Hence, all registers that
   this pass deals with are hard registers.  This pass first looks for an
   extension instruction that could possibly be redundant.  Such extension
   instructions show up in RTL with the pattern  :
   (set (reg:<SWI248> x) (any_extend:<SWI248> (reg:<SWI124> x))),
   where x can be any hard register.
   Now, this pass tries to eliminate this instruction by merging the
   extension with the definitions of register x.  For instance, if
   one of the definitions of register x was  :
   (set (reg:SI x) (plus:SI (reg:SI z1) (reg:SI z2))),
   followed by extension  :
   (set (reg:DI x) (zero_extend:DI (reg:SI x)))
   then the combination converts this into :
   (set (reg:DI x) (zero_extend:DI (plus:SI (reg:SI z1) (reg:SI z2)))).
   If all the merged definitions are recognizable assembly instructions,
   the extension is effectively eliminated.

   For example, for the x86-64 architecture, implicit zero-extensions
   are captured with appropriate patterns in the i386.md file.  Hence,
   these merged definition can be matched to a single assembly instruction.
   The original extension instruction is then deleted if all the
   definitions can be merged.

   However, there are cases where the definition instruction cannot be
   merged with an extension.  Examples are CALL instructions.  In such
   cases, the original extension is not redundant and this pass does
   not delete it.

   Handling conditional moves :
   ----------------------------

   Architectures like x86-64 support conditional moves whose semantics for
   extension differ from the other instructions.  For instance, the
   instruction *cmov ebx, eax*
   zero-extends eax onto rax only when the move from ebx to eax happens.
   Otherwise, eax may not be zero-extended.  Consider conditional moves as
   RTL instructions of the form
   (set (reg:SI x) (if_then_else (cond) (reg:SI y) (reg:SI z))).
   This pass tries to merge an extension with a conditional move by
   actually merging the definitions of y and z with an extension and then
   converting the conditional move into :
   (set (reg:DI x) (if_then_else (cond) (reg:DI y) (reg:DI z))).
   Since registers y and z are extended, register x will also be extended
   after the conditional move.  Note that this step has to be done
   transitively since the definition of a conditional copy can be
   another conditional copy.

   Motivating Example I :
   ---------------------
   For this program :
   **********************************************
   bad_code.c

   int mask[1000];

   int foo(unsigned x)
   {
     if (x < 10)
       x = x * 45;
     else
       x = x * 78;
     return mask[x];
   }
   **********************************************

   $ gcc -O2 bad_code.c
     ........
     400315:       b8 4e 00 00 00          mov    $0x4e,%eax
     40031a:       0f af f8                imul   %eax,%edi
     40031d:       89 ff                   mov    %edi,%edi - useless extension
     40031f:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     400326:       c3                      retq
     ......
     400330:       ba 2d 00 00 00          mov    $0x2d,%edx
     400335:       0f af fa                imul   %edx,%edi
     400338:       89 ff                   mov    %edi,%edi - useless extension
     40033a:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     400341:       c3                      retq

   $ gcc -O2 -free bad_code.c
     ......
     400315:       6b ff 4e                imul   $0x4e,%edi,%edi
     400318:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     40031f:       c3                      retq
     400320:       6b ff 2d                imul   $0x2d,%edi,%edi
     400323:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     40032a:       c3                      retq

   Motivating Example II :
   ---------------------

   Here is an example with a conditional move.

   For this program :
   **********************************************

   unsigned long long foo(unsigned x , unsigned y)
   {
     unsigned z;
     if (x > 100)
       z = x + y;
     else
       z = x - y;
     return (unsigned long long)(z);
   }

   $ gcc -O2 bad_code.c
     ............
     400360:       8d 14 3e                lea    (%rsi,%rdi,1),%edx
     400363:       89 f8                   mov    %edi,%eax
     400365:       29 f0                   sub    %esi,%eax
     400367:       83 ff 65                cmp    $0x65,%edi
     40036a:       0f 43 c2                cmovae %edx,%eax
     40036d:       89 c0                   mov    %eax,%eax - useless extension
     40036f:       c3                      retq

   $ gcc -O2 -free bad_code.c
     .............
     400360:       89 fa                   mov    %edi,%edx
     400362:       8d 04 3e                lea    (%rsi,%rdi,1),%eax
     400365:       29 f2                   sub    %esi,%edx
     400367:       83 ff 65                cmp    $0x65,%edi
     40036a:       89 d6                   mov    %edx,%esi
     40036c:       48 0f 42 c6             cmovb  %rsi,%rax
     400370:       c3                      retq

  Motivating Example III :
  ---------------------

  Here is an example with a type cast.

  For this program :
  **********************************************

  void test(int size, unsigned char *in, unsigned char *out)
  {
    int i;
    unsigned char xr, xg, xy=0;

    for (i = 0; i < size; i++) {
      xr = *in++;
      xg = *in++;
      xy = (unsigned char) ((19595*xr + 38470*xg) >> 16);
      *out++ = xy;
    }
  }

  $ gcc -O2 bad_code.c
    ............
    10:   0f b6 0e                movzbl (%rsi),%ecx
    13:   0f b6 46 01             movzbl 0x1(%rsi),%eax
    17:   48 83 c6 02             add    $0x2,%rsi
    1b:   0f b6 c9                movzbl %cl,%ecx - useless extension
    1e:   0f b6 c0                movzbl %al,%eax - useless extension
    21:   69 c9 8b 4c 00 00       imul   $0x4c8b,%ecx,%ecx
    27:   69 c0 46 96 00 00       imul   $0x9646,%eax,%eax

   $ gcc -O2 -free bad_code.c
     .............
    10:   0f b6 0e                movzbl (%rsi),%ecx
    13:   0f b6 46 01             movzbl 0x1(%rsi),%eax
    17:   48 83 c6 02             add    $0x2,%rsi
    1b:   69 c9 8b 4c 00 00       imul   $0x4c8b,%ecx,%ecx
    21:   69 c0 46 96 00 00       imul   $0x9646,%eax,%eax

   Usefulness :
   ----------

   The original redundant zero-extension elimination pass reported reduction
   of the dynamic instruction count of a compression benchmark by 2.8% and
   improvement of its run time by about 1%.

   The additional performance gain with the enhanced pass is mostly expected
   on in-order architectures where redundancy cannot be compensated by out of
   order execution.  Measurements showed up to 10% performance gain (reduced
   run time) on EEMBC 2.0 benchmarks on Atom processor with geomean performance
   gain 1%.   
This structure represents a candidate for elimination.   
typedef struct ext_state ext_state
Vectors used by combine_reaching_defs and its helpers.   

Enumeration Type Documentation

Enumerator:
EXT_MODIFIED_NONE 
EXT_MODIFIED_ZEXT 
EXT_MODIFIED_SEXT 

Function Documentation

static void add_removable_extension ( const_rtx  expr,
rtx  insn,
vec< ext_cand > *  insn_list,
unsigned *  def_map 
)
static
Add an extension pattern that could be eliminated.   

References ext_cand::code, defs, dump_file, get_defs(), df_link::next, print_rtl_single(), df_link::ref, and SET.

Referenced by find_removable_extensions().

static bool combine_reaching_defs ( )
static
This function goes through all reaching defs of the source
   of the candidate for elimination (CAND) and tries to combine
   the extension with the definition instruction.  The changes
   are made as a group so that even if one definition cannot be
   merged, all reaching definitions end up not being merged.
   When a conditional copy is encountered, merging is attempted
   transitively on its definitions.  It returns true upon success
   and false upon failure.   

References apply_change_group(), cancel_changes(), ext_cand::code, ext_state::copies_list, ext_state::defs_list, dump_file, EXT_MODIFIED_NONE, EXT_MODIFIED_SEXT, EXT_MODIFIED_ZEXT, ext_cand::insn, make_defs_and_copies_lists(), merge_def_and_ext(), ext_cand::mode, ext_state::modified, ext_state::modified_list, print_rtl_single(), and transform_ifelse().

Referenced by find_and_remove_re().

static bool combine_set_extension ( )
static
Given a insn (CURR_INSN), an extension candidate for removal (CAND)
   and a pointer to the SET rtx (ORIG_SET) that needs to be modified,
   this code modifies the SET rtx to a new SET rtx that extends the
   right hand expression into a register on the left hand side.  Note
   that multiple assumptions are made about the nature of the set that
   needs to be true for this to work and is called from merge_def_and_ext.

   Original :
   (set (reg a) (expression))

   Transform :
   (set (reg a) (any_extend (expression)))

   Special Cases :
   If the expression is a constant or another extension, then directly
   assign it to the register.   

References ext_cand::code, dump_file, gen_rtx_REG(), HOST_BITS_PER_WIDE_INT, ext_cand::mode, print_rtl_single(), simplify_rtx(), and validate_change().

Referenced by merge_def_and_ext().

static vec<ext_cand> find_removable_extensions ( )
static
Traverse the instruction stream looking for extensions and return the
   list of candidates.   

References add_removable_extension(), max_insn_uid, and vNULL.

Referenced by find_and_remove_re().

static bool gate_handle_ree ( )
static
Run REE pass when flag_ree is set at optimization level > 0.   
static struct df_link* get_defs ( )
staticread
Get all the reaching definitions of an instruction.  The definitions are
   desired for REG used in INSN.  Return the definition list or NULL if a
   definition is missing.  If DEST is non-NULL, additionally push the INSN
   of the definitions onto DEST.   

References df_link::next, and df_link::ref.

Referenced by add_removable_extension(), and make_defs_and_copies_lists().

static bool is_cond_copy_insn ( )
static
Return true if INSN is
     (SET (reg REGNO (def_reg)) (if_then_else (cond) (REG x1) (REG x2)))
   and store x1 and x2 in REG_1 and REG_2.   

References SET.

Referenced by make_defs_and_copies_lists().

static bool make_defs_and_copies_lists ( rtx  extend_insn,
const_rtx  set_pat,
ext_state state 
)
static
Reaching Definitions of the extended register could be conditional copies
   or regular definitions.  This function separates the two types into two
   lists, STATE->DEFS_LIST and STATE->COPIES_LIST.  This is necessary because,
   if a reaching definition is a conditional copy, merging the extension with
   this definition is wrong.  Conditional copies are merged by transitively
   merging their definitions.  The defs_list is populated with all the reaching
   definitions of the extension instruction (EXTEND_INSN) which must be merged
   with an extension.  The copies_list contains all the conditional moves that
   will later be extended into a wider mode conditional move if all the merges
   are successful.  The function returns false upon failure, true upon
   success.   

References ext_state::copies_list, ext_state::defs_list, get_defs(), is_cond_copy_insn(), max_insn_uid, and ext_state::work_list.

Referenced by combine_reaching_defs().

rtl_opt_pass* make_pass_ree ( )
static bool merge_def_and_ext ( )
static
Merge the DEF_INSN with an extension.  Calls combine_set_extension
   on the SET pattern.   

References ext_cand::code, combine_set_extension(), deleted, ext_cand::expr, EXT_MODIFIED_NONE, EXT_MODIFIED_SEXT, EXT_MODIFIED_ZEXT, ext_cand::mode, ext_state::modified, and SET.

Referenced by combine_reaching_defs().

static unsigned int rest_of_handle_ree ( )
static
Find and remove redundant extensions.   

References find_and_remove_re(), timevar_pop(), and timevar_push().

static bool transform_ifelse ( )
static
Treat if_then_else insns, where the operands of both branches
   are registers, as copies.  For instance,
   Original :
   (set (reg:SI a) (if_then_else (cond) (reg:SI b) (reg:SI c)))
   Transformed :
   (set (reg:DI a) (if_then_else (cond) (reg:DI b) (reg:DI c)))
   DEF_INSN is the if_then_else insn.   

References dump_file, gen_rtx_REG(), ext_cand::mode, print_rtl_single(), SET, and validate_change().

Referenced by combine_reaching_defs().


Variable Documentation