GCC Middle and Back End API Reference
tree-ssa-propagate.c File Reference

Data Structures

struct  prop_stats_d

Functions

static bool cfg_blocks_empty_p ()
static void cfg_blocks_add ()
static basic_block cfg_blocks_get ()
static void add_ssa_edge ()
static void add_control_edge ()
static void simulate_stmt ()
static void process_ssa_edge_worklist ()
static void simulate_block ()
static void ssa_prop_init ()
static void ssa_prop_fini ()
bool valid_gimple_rhs_p ()
static bool valid_gimple_call_p ()
void move_ssa_defining_stmt_for_defs ()
static void finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple new_stmt, gimple stmt)
bool update_gimple_call ()
bool update_call_from_tree ()
void ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt, ssa_prop_visit_phi_fn visit_phi)
bool stmt_makes_single_store ()
static bool replace_uses_in ()
static void replace_phi_args_in ()
bool substitute_and_fold (ssa_prop_get_value_fn get_value_fn, ssa_prop_fold_stmt_fn fold_fn, bool do_dce)

Variables

static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt
static ssa_prop_visit_phi_fn ssa_prop_visit_phi
static sbitmap executable_blocks
static vec< basic_blockcfg_blocks
static unsigned int cfg_blocks_num = 0
static int cfg_blocks_tail
static int cfg_blocks_head
static sbitmap bb_in_list
static vec< gimple, va_gc > * interesting_ssa_edges
static vec< gimple, va_gc > * varying_ssa_edges
static struct prop_stats_d prop_stats

Function Documentation

static void add_control_edge ( )
static
static void add_ssa_edge ( )
static
We have just defined a new value for VAR.  If IS_VARYING is true,
   add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
   them to INTERESTING_SSA_EDGES.   

References gimple_plf(), gimple_set_plf(), interesting_ssa_edges, prop_simulate_again_p(), varying_ssa_edges, and vec_safe_push().

Referenced by simulate_stmt().

static void cfg_blocks_add ( )
static
Add a basic block to the worklist.  The block must not be already
   in the worklist, and it must not be the ENTRY or EXIT block.   

References bitmap_bit_p(), bitmap_set_bit(), cfg_blocks_empty_p(), cfg_blocks_head, cfg_blocks_num, cfg_blocks_tail, basic_block_def::index, and basic_block_def::preds.

Referenced by add_control_edge().

static bool cfg_blocks_empty_p ( )
inlinestatic
Return true if the block worklist empty.   

References cfg_blocks_num.

Referenced by cfg_blocks_add(), cfg_blocks_get(), and ssa_propagate().

static basic_block cfg_blocks_get ( )
static
Remove a block from the worklist.   

References bitmap_clear_bit(), cfg_blocks_empty_p(), cfg_blocks_head, cfg_blocks_num, and basic_block_def::index.

Referenced by ssa_propagate().

static void finish_update_gimple_call ( gimple_stmt_iterator si_p,
gimple  new_stmt,
gimple  stmt 
)
static
Helper function for update_gimple_call and update_call_from_tree.
   A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT.   

References gimple_block(), gimple_call_lhs(), gimple_call_set_lhs(), gimple_location(), gimple_set_block(), gimple_set_location(), gimple_set_vdef(), gimple_set_vuse(), gimple_vdef(), gimple_vuse(), gsi_replace(), and move_ssa_defining_stmt_for_defs().

Referenced by update_call_from_tree(), and update_gimple_call().

void move_ssa_defining_stmt_for_defs ( )
Make SSA names defined by OLD_STMT point to NEW_STMT
   as their defining statement.   

References cfun, and gimple_in_ssa_p().

Referenced by finish_update_gimple_call(), and update_call_from_tree().

static void process_ssa_edge_worklist ( )
static
Process an SSA edge worklist.  WORKLIST is the SSA edge worklist to
   drain.  This pops statements off the given WORKLIST and processes
   them until there are no more statements on WORKLIST.
   We take a pointer to WORKLIST because it may be reallocated when an
   SSA edge is added to it in simulate_stmt.   

References bitmap_bit_p(), dump_file, dump_flags, gimple_bb(), gimple_plf(), gimple_set_plf(), basic_block_def::index, print_gimple_stmt(), and simulate_stmt().

Referenced by ssa_propagate().

static void replace_phi_args_in ( )
static
static bool replace_uses_in ( )
static
Replace USE references in statement STMT with the values stored in
   PROP_VALUE. Return true if at least one reference was replaced.   

References may_propagate_copy(), may_propagate_copy_into_asm(), prop_stats_d::num_const_prop, prop_stats_d::num_copy_prop, prop_stats, and propagate_value().

Referenced by substitute_and_fold().

static void simulate_block ( )
static
Simulate the execution of BLOCK.  Evaluate the statement associated
   with each variable reference inside the block.   

References add_control_edge(), bitmap_bit_p(), bitmap_set_bit(), dump_file, dump_flags, edge_def::flags, gimple_plf(), gimple_set_plf(), gsi_end_p(), gsi_next(), gsi_start_bb(), gsi_start_phis(), gsi_stmt(), basic_block_def::index, simulate_stmt(), and basic_block_def::succs.

Referenced by ssa_propagate().

static void ssa_prop_fini ( )
static
Free allocated storage.   

References interesting_ssa_edges, sbitmap_free(), varying_ssa_edges, and vec_free().

Referenced by ssa_propagate().

void ssa_propagate ( ssa_prop_visit_stmt_fn  visit_stmt,
ssa_prop_visit_phi_fn  visit_phi 
)
Entry point to the propagation engine.

   VISIT_STMT is called for every statement visited.
   VISIT_PHI is called for every PHI node visited.   

References cfg_blocks_empty_p(), cfg_blocks_get(), interesting_ssa_edges, process_ssa_edge_worklist(), simulate_block(), ssa_prop_fini(), ssa_prop_init(), ssa_prop_visit_phi, ssa_prop_visit_stmt, varying_ssa_edges, and visit_phi().

Referenced by do_ssa_ccp(), execute_copy_prop(), execute_vrp(), and tree_lower_complex().

bool stmt_makes_single_store ( )
Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
   is a non-volatile pointer dereference, a structure reference or a
   reference to a single _DECL.  Ignore volatile memory references
   because they are not interesting for the optimizers.   

References gimple_get_lhs(), and gimple_vdef().

Referenced by determine_invariantness_stmt().

bool substitute_and_fold ( ssa_prop_get_value_fn  get_value_fn,
ssa_prop_fold_stmt_fn  fold_fn,
bool  do_dce 
)
Perform final substitution and folding of propagated values.

   PROP_VALUE[I] contains the single value that should be substituted
   at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
   substituted.

   If FOLD_FN is non-NULL the function will be invoked on all statements
   before propagating values for pass specific simplification.

   DO_DCE is true if trivially dead stmts can be removed.

   If DO_DCE is true, the statements within a BB are walked from
   last to first element.  Otherwise we scan from first to last element.

   Return TRUE when something changed.   

References cfun, dump_file, dump_flags, fold_stmt(), get_gimple_rhs_class(), gimple_assign_rhs1(), gimple_assign_rhs_code(), gimple_assign_set_rhs_with_ops(), gimple_assign_single_p(), gimple_call_flags(), gimple_get_lhs(), gimple_has_side_effects(), gimple_nop_p(), gimple_purge_dead_eh_edges(), GIMPLE_SINGLE_RHS, gsi_after_labels(), gsi_end_p(), gsi_for_stmt(), gsi_insert_before(), gsi_last_bb(), gsi_next(), gsi_prev(), gsi_remove(), GSI_SAME_STMT, gsi_start_bb(), gsi_start_phis(), gsi_stmt(), has_zero_uses(), i2, is_gimple_assign(), is_gimple_call(), is_gimple_debug(), may_propagate_copy(), maybe_clean_eh_stmt(), maybe_clean_or_replace_eh_stmt(), memset(), prop_stats_d::num_const_prop, prop_stats_d::num_copy_prop, prop_stats_d::num_dce, prop_stats_d::num_stmts_folded, print_gimple_stmt(), prop_stats, recompute_tree_invariant_for_addr_expr(), release_defs(), remove_phi_node(), replace_phi_args_in(), replace_uses_in(), statistics_counter_event(), stmt_could_throw_p(), update_call_from_tree(), update_stmt(), and virtual_operand_p().

Referenced by ccp_finalize(), fini_copy_prop(), and vrp_finalize().

bool update_call_from_tree ( )
Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
   value of EXPR, which is expected to be the result of folding the
   call.  This can only be done if EXPR is a CALL_EXPR with valid
   GIMPLE operands as arguments, or if it is a suitable RHS expression
   for a GIMPLE_ASSIGN.  More complex expressions will require
   gimplification, which will introduce additional statements.  In this
   event, no update is performed, and the function returns false.
   Note that we cannot mutate a GIMPLE_CALL in-place, so we always
   replace the statement at *SI_P with an entirely new statement.
   The new statement need not be a call, e.g., if the original call
   folded to a constant.   

References cfun, create_tmp_var(), finish_update_gimple_call(), gimple_build_call_vec(), gimple_build_nop(), gimple_call_lhs(), gimple_in_ssa_p(), gimple_location(), gimple_set_location(), gimple_set_vdef(), gimple_set_vuse(), gimple_vdef(), gimple_vuse(), gsi_replace(), gsi_stmt(), make_ssa_name(), move_ssa_defining_stmt_for_defs(), release_defs(), unlink_stmt_vdef(), valid_gimple_call_p(), valid_gimple_rhs_p(), and vNULL.

Referenced by adjust_simduid_builtins(), ccp_fold_stmt(), compute_object_sizes(), execute_fold_all_builtins(), gimple_fold_call(), handle_builtin_strchr(), handle_builtin_strlen(), optimize_stack_restore(), propagate_tree_value_into_stmt(), and substitute_and_fold().

bool update_gimple_call ( )
Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
   with number of arguments NARGS, where the arguments in GIMPLE form
   follow NARGS argument.   

References finish_update_gimple_call(), gimple_build_call_valist(), gsi_stmt(), and is_gimple_call().

Referenced by handle_builtin_strcat(), handle_builtin_strcpy(), and instrument_builtin_call().

static bool valid_gimple_call_p ( )
static
Return true if EXPR is a CALL_EXPR suitable for representation
   as a single GIMPLE_CALL statement.  If the arguments require
   further gimplification, return false.   

References is_gimple_lvalue(), is_gimple_reg_type(), and is_gimple_val().

Referenced by update_call_from_tree().

bool valid_gimple_rhs_p ( )
Return true if EXPR is an acceptable right-hand-side for a
   GIMPLE assignment.  We validate the entire tree, not just
   the root node, thus catching expressions that embed complex
   operands that are not permitted in GIMPLE.  This function
   is needed because the folding routines in fold-const.c
   may return such expressions in some cases, e.g., an array
   access with an embedded index addition.  It may make more
   sense to have folding routines that are sensitive to the
   constraints on GIMPLE operands, rather than abandoning any
   any attempt to fold if the usual folding turns out to be too
   aggressive.   

References get_gimple_rhs_class(), GIMPLE_TERNARY_RHS, handled_component_p(), is_gimple_condexpr(), is_gimple_id(), is_gimple_min_invariant(), is_gimple_val(), is_gimple_variable(), tcc_binary, tcc_comparison, tcc_constant, tcc_declaration, tcc_exceptional, tcc_expression, tcc_reference, tcc_unary, and tcc_vl_exp.

Referenced by fold_gimple_assign(), fold_gimple_cond(), rewrite_use_nonlinear_expr(), simplify_binary_expression(), simplify_bitfield_ref(), simplify_unary_expression(), update_call_from_tree(), and visit_use().


Variable Documentation

sbitmap bb_in_list
static
vec<basic_block> cfg_blocks
static
Array of control flow edges on the worklist.   
int cfg_blocks_head
static

Referenced by cfg_blocks_add(), and cfg_blocks_get().

unsigned int cfg_blocks_num = 0
static
int cfg_blocks_tail
static

Referenced by cfg_blocks_add().

sbitmap executable_blocks
static
A bitmap to keep track of executable blocks in the CFG.   
vec<gimple, va_gc>* interesting_ssa_edges
static
Worklist of SSA edges which will need reexamination as their
   definition has changed.  SSA edges are def-use edges in the SSA
   web.  For each D-U edge, we store the target statement or PHI node
   U.   

Referenced by add_ssa_edge(), ssa_prop_fini(), ssa_prop_init(), and ssa_propagate().

struct prop_stats_d prop_stats
static
ssa_prop_visit_phi_fn ssa_prop_visit_phi
static

Referenced by simulate_stmt(), and ssa_propagate().

ssa_prop_visit_stmt_fn ssa_prop_visit_stmt
static
Generic SSA value propagation engine.
   Copyright (C) 2004-2013 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 3, or (at your option) any
   later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.   
This file implements a generic value propagation engine based on
   the same propagation used by the SSA-CCP algorithm [1].

   Propagation is performed by simulating the execution of every
   statement that produces the value being propagated.  Simulation
   proceeds as follows:

   1- Initially, all edges of the CFG are marked not executable and
      the CFG worklist is seeded with all the statements in the entry
      basic block (block 0).

   2- Every statement S is simulated with a call to the call-back
      function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
      results:

        SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
            interest and does not affect any of the work lists.

        SSA_PROP_VARYING: The value produced by S cannot be determined
            at compile time.  Further simulation of S is not required.
            If S is a conditional jump, all the outgoing edges for the
            block are considered executable and added to the work
            list.

        SSA_PROP_INTERESTING: S produces a value that can be computed
            at compile time.  Its result can be propagated into the
            statements that feed from S.  Furthermore, if S is a
            conditional jump, only the edge known to be taken is added
            to the work list.  Edges that are known not to execute are
            never simulated.

   3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
      return value from SSA_PROP_VISIT_PHI has the same semantics as
      described in #2.

   4- Three work lists are kept.  Statements are only added to these
      lists if they produce one of SSA_PROP_INTERESTING or
      SSA_PROP_VARYING.

        CFG_BLOCKS contains the list of blocks to be simulated.
            Blocks are added to this list if their incoming edges are
            found executable.

        VARYING_SSA_EDGES contains the list of statements that feed
            from statements that produce an SSA_PROP_VARYING result.
            These are simulated first to speed up processing.

        INTERESTING_SSA_EDGES contains the list of statements that
            feed from statements that produce an SSA_PROP_INTERESTING
            result.

   5- Simulation terminates when all three work lists are drained.

   Before calling ssa_propagate, it is important to clear
   prop_simulate_again_p for all the statements in the program that
   should be simulated.  This initialization allows an implementation
   to specify which statements should never be simulated.

   It is also important to compute def-use information before calling
   ssa_propagate.

   References:

     [1] Constant propagation with conditional branches,
         Wegman and Zadeck, ACM TOPLAS 13(2):181-210.

     [2] Building an Optimizing Compiler,
         Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.

     [3] Advanced Compiler Design and Implementation,
         Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6   
Function pointers used to parameterize the propagation engine.   

Referenced by simulate_stmt(), and ssa_propagate().

vec<gimple, va_gc>* varying_ssa_edges
static
Identical to INTERESTING_SSA_EDGES.  For performance reasons, the
   list of SSA edges is split into two.  One contains all SSA edges
   who need to be reexamined because their lattice value changed to
   varying (this worklist), and the other contains all other SSA edges
   to be reexamined (INTERESTING_SSA_EDGES).

   Since most values in the program are VARYING, the ideal situation
   is to move them to that lattice value as quickly as possible.
   Thus, it doesn't make sense to process any other type of lattice
   value until all VARYING values are propagated fully, which is one
   thing using the VARYING worklist achieves.  In addition, if we
   don't use a separate worklist for VARYING edges, we end up with
   situations where lattice values move from
   UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING.   

Referenced by add_ssa_edge(), ssa_prop_fini(), ssa_prop_init(), and ssa_propagate().