GCC Middle and Back End API Reference
real.h
Go to the documentation of this file.
1 /* Definitions of floating-point access for GNU compiler.
2  Copyright (C) 1989-2013 Free Software Foundation, Inc.
3 
4  This file is part of GCC.
5 
6  GCC is free software; you can redistribute it and/or modify it under
7  the terms of the GNU General Public License as published by the Free
8  Software Foundation; either version 3, or (at your option) any later
9  version.
10 
11  GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12  WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14  for more details.
15 
16  You should have received a copy of the GNU General Public License
17  along with GCC; see the file COPYING3. If not see
18  <http://www.gnu.org/licenses/>. */
19 
20 #ifndef GCC_REAL_H
21 #define GCC_REAL_H
22 
23 #include "machmode.h"
24 
25 /* An expanded form of the represented number. */
26 
27 /* Enumerate the special cases of numbers that we encounter. */
28 enum real_value_class {
29  rvc_zero,
30  rvc_normal,
33 };
34 
35 #define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG)
36 #define EXP_BITS (32 - 6)
37 #define MAX_EXP ((1 << (EXP_BITS - 1)) - 1)
38 #define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
39 #define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
40 
41 struct GTY(()) real_value {
42  /* Use the same underlying type for all bit-fields, so as to make
43  sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
44  be miscomputed. */
45  unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
46  unsigned int decimal : 1;
47  unsigned int sign : 1;
48  unsigned int signalling : 1;
49  unsigned int canonical : 1;
50  unsigned int uexp : EXP_BITS;
51  unsigned long sig[SIGSZ];
52 };
53 
54 #define REAL_EXP(REAL) \
55  ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
56  - (1 << (EXP_BITS - 1)))
57 #define SET_REAL_EXP(REAL, EXP) \
58  ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
59 
60 /* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
61  needs to be a macro. We do need to continue to have a structure tag
62  so that other headers can forward declare it. */
63 #define REAL_VALUE_TYPE struct real_value
64 
65 /* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
66  consecutive "w" slots. Moreover, we've got to compute the number of "w"
67  slots at preprocessor time, which means we can't use sizeof. Guess. */
68 
69 #define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
70 #define REAL_WIDTH \
71  (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
72  + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
73 
74 /* Verify the guess. */
75 extern char test_real_width
76  [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1];
77 
78 /* Calculate the format for CONST_DOUBLE. We need as many slots as
79  are necessary to overlay a REAL_VALUE_TYPE on them. This could be
80  as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
81 
82  A number of places assume that there are always at least two 'w'
83  slots in a CONST_DOUBLE, so we provide them even if one would suffice. */
84 
85 #if REAL_WIDTH == 1
86 # define CONST_DOUBLE_FORMAT "ww"
87 #else
88 # if REAL_WIDTH == 2
89 # define CONST_DOUBLE_FORMAT "ww"
90 # else
91 # if REAL_WIDTH == 3
92 # define CONST_DOUBLE_FORMAT "www"
93 # else
94 # if REAL_WIDTH == 4
95 # define CONST_DOUBLE_FORMAT "wwww"
96 # else
97 # if REAL_WIDTH == 5
98 # define CONST_DOUBLE_FORMAT "wwwww"
99 # else
100 # if REAL_WIDTH == 6
101 # define CONST_DOUBLE_FORMAT "wwwwww"
102 # else
103  #error "REAL_WIDTH > 6 not supported"
104 # endif
105 # endif
106 # endif
107 # endif
108 # endif
109 #endif
110 
111 
112 /* Describes the properties of the specific target format in use. */
113 struct real_format
114 {
115  /* Move to and from the target bytes. */
116  void (*encode) (const struct real_format *, long *,
117  const REAL_VALUE_TYPE *);
118  void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
119  const long *);
120 
121  /* The radix of the exponent and digits of the significand. */
122  int b;
123 
124  /* Size of the significand in digits of radix B. */
125  int p;
127  /* Size of the significant of a NaN, in digits of radix B. */
128  int pnan;
129 
130  /* The minimum negative integer, x, such that b**(x-1) is normalized. */
131  int emin;
132 
133  /* The maximum integer, x, such that b**(x-1) is representable. */
134  int emax;
135 
136  /* The bit position of the sign bit, for determining whether a value
137  is positive/negative, or -1 for a complex encoding. */
138  int signbit_ro;
139 
140  /* The bit position of the sign bit, for changing the sign of a number,
141  or -1 for a complex encoding. */
142  int signbit_rw;
143 
144  /* Default rounding mode for operations on this format. */
147 
148  /* Properties of the format. */
149  bool has_nans;
150  bool has_inf;
151  bool has_denorm;
152  bool has_signed_zero;
153  bool qnan_msb_set;
155 };
156 
157 
158 /* The target format used for each floating point mode.
159  Float modes are followed by decimal float modes, with entries for
160  float modes indexed by (MODE - first float mode), and entries for
161  decimal float modes indexed by (MODE - first decimal float mode) +
162  the number of float modes. */
163 extern const struct real_format *
164  real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1
165  + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1];
166 
167 #define REAL_MODE_FORMAT(MODE) \
168  (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \
169  ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \
170  + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \
171  : ((MODE) - MIN_MODE_FLOAT)])
173 #define FLOAT_MODE_FORMAT(MODE) \
174  (REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \
175  : GET_MODE_INNER (MODE)))
176 
177 /* The following macro determines whether the floating point format is
178  composite, i.e. may contain non-consecutive mantissa bits, in which
179  case compile-time FP overflow may not model run-time overflow. */
180 #define MODE_COMPOSITE_P(MODE) \
181  (FLOAT_MODE_P (MODE) \
182  && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
183 
184 /* Accessor macros for format properties. */
185 #define MODE_HAS_NANS(MODE) \
186  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
187 #define MODE_HAS_INFINITIES(MODE) \
188  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
189 #define MODE_HAS_SIGNED_ZEROS(MODE) \
190  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
191 #define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
192  (FLOAT_MODE_P (MODE) \
193  && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
194 
195 /* True if the given mode has a NaN representation and the treatment of
196  NaN operands is important. Certain optimizations, such as folding
197  x * 0 into 0, are not correct for NaN operands, and are normally
198  disabled for modes with NaNs. The user can ask for them to be
199  done anyway using the -funsafe-math-optimizations switch. */
200 #define HONOR_NANS(MODE) \
201  (MODE_HAS_NANS (MODE) && !flag_finite_math_only)
202 
203 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
204 #define HONOR_SNANS(MODE) (flag_signaling_nans && HONOR_NANS (MODE))
205 
206 /* As for HONOR_NANS, but true if the mode can represent infinity and
207  the treatment of infinite values is important. */
208 #define HONOR_INFINITIES(MODE) \
209  (MODE_HAS_INFINITIES (MODE) && !flag_finite_math_only)
210 
211 /* Like HONOR_NANS, but true if the given mode distinguishes between
212  positive and negative zero, and the sign of zero is important. */
213 #define HONOR_SIGNED_ZEROS(MODE) \
214  (MODE_HAS_SIGNED_ZEROS (MODE) && flag_signed_zeros)
215 
216 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
217  and the rounding mode is important. */
218 #define HONOR_SIGN_DEPENDENT_ROUNDING(MODE) \
219  (MODE_HAS_SIGN_DEPENDENT_ROUNDING (MODE) && flag_rounding_math)
220 
221 /* Declare functions in real.c. */
222 
223 /* Binary or unary arithmetic on tree_code. */
224 extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
225  const REAL_VALUE_TYPE *);
226 
227 /* Compare reals by tree_code. */
228 extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
229 
230 /* Determine whether a floating-point value X is infinite. */
231 extern bool real_isinf (const REAL_VALUE_TYPE *);
232 
233 /* Determine whether a floating-point value X is a NaN. */
234 extern bool real_isnan (const REAL_VALUE_TYPE *);
235 
236 /* Determine whether a floating-point value X is finite. */
237 extern bool real_isfinite (const REAL_VALUE_TYPE *);
238 
239 /* Determine whether a floating-point value X is negative. */
240 extern bool real_isneg (const REAL_VALUE_TYPE *);
241 
242 /* Determine whether a floating-point value X is minus zero. */
243 extern bool real_isnegzero (const REAL_VALUE_TYPE *);
244 
245 /* Compare two floating-point objects for bitwise identity. */
246 extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
247 
248 /* Extend or truncate to a new mode. */
249 extern void real_convert (REAL_VALUE_TYPE *, enum machine_mode,
250  const REAL_VALUE_TYPE *);
251 
252 /* Return true if truncating to NEW is exact. */
253 extern bool exact_real_truncate (enum machine_mode, const REAL_VALUE_TYPE *);
254 
255 /* Render R as a decimal floating point constant. */
256 extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
257  size_t, int);
258 
259 /* Render R as a decimal floating point constant, rounded so as to be
260  parsed back to the same value when interpreted in mode MODE. */
261 extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
262  size_t, int, enum machine_mode);
263 
264 /* Render R as a hexadecimal floating point constant. */
265 extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
266  size_t, size_t, int);
267 
268 /* Render R as an integer. */
269 extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
271  const REAL_VALUE_TYPE *);
272 
273 /* Initialize R from a decimal or hexadecimal string. Return -1 if
274  the value underflows, +1 if overflows, and 0 otherwise. */
275 extern int real_from_string (REAL_VALUE_TYPE *, const char *);
276 /* Wrapper to allow different internal representation for decimal floats. */
277 extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, enum machine_mode);
278 
279 /* Initialize R from an integer pair HIGH/LOW. */
280 extern void real_from_integer (REAL_VALUE_TYPE *, enum machine_mode,
281  unsigned HOST_WIDE_INT, HOST_WIDE_INT, int);
282 
283 extern long real_to_target_fmt (long *, const REAL_VALUE_TYPE *,
284  const struct real_format *);
285 extern long real_to_target (long *, const REAL_VALUE_TYPE *, enum machine_mode);
286 
287 extern void real_from_target_fmt (REAL_VALUE_TYPE *, const long *,
288  const struct real_format *);
289 extern void real_from_target (REAL_VALUE_TYPE *, const long *,
290  enum machine_mode);
291 
292 extern void real_inf (REAL_VALUE_TYPE *);
293 
294 extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, enum machine_mode);
295 
296 extern void real_maxval (REAL_VALUE_TYPE *, int, enum machine_mode);
297 
298 extern void real_2expN (REAL_VALUE_TYPE *, int, enum machine_mode);
299 
300 extern unsigned int real_hash (const REAL_VALUE_TYPE *);
301 
302 
303 /* Target formats defined in real.c. */
304 extern const struct real_format ieee_single_format;
305 extern const struct real_format mips_single_format;
306 extern const struct real_format motorola_single_format;
307 extern const struct real_format spu_single_format;
308 extern const struct real_format ieee_double_format;
309 extern const struct real_format mips_double_format;
310 extern const struct real_format motorola_double_format;
311 extern const struct real_format ieee_extended_motorola_format;
312 extern const struct real_format ieee_extended_intel_96_format;
314 extern const struct real_format ieee_extended_intel_128_format;
315 extern const struct real_format ibm_extended_format;
316 extern const struct real_format mips_extended_format;
317 extern const struct real_format ieee_quad_format;
318 extern const struct real_format mips_quad_format;
319 extern const struct real_format vax_f_format;
320 extern const struct real_format vax_d_format;
321 extern const struct real_format vax_g_format;
322 extern const struct real_format real_internal_format;
323 extern const struct real_format decimal_single_format;
324 extern const struct real_format decimal_double_format;
325 extern const struct real_format decimal_quad_format;
326 extern const struct real_format ieee_half_format;
327 extern const struct real_format arm_half_format;
328 
329 
330 /* ====================================================================== */
331 /* Crap. */
332 
333 #define REAL_ARITHMETIC(value, code, d1, d2) \
334  real_arithmetic (&(value), code, &(d1), &(d2))
335 
336 #define REAL_VALUES_IDENTICAL(x, y) real_identical (&(x), &(y))
337 #define REAL_VALUES_EQUAL(x, y) real_compare (EQ_EXPR, &(x), &(y))
338 #define REAL_VALUES_LESS(x, y) real_compare (LT_EXPR, &(x), &(y))
339 
340 /* Determine whether a floating-point value X is infinite. */
341 #define REAL_VALUE_ISINF(x) real_isinf (&(x))
342 
343 /* Determine whether a floating-point value X is a NaN. */
344 #define REAL_VALUE_ISNAN(x) real_isnan (&(x))
345 
346 /* Determine whether a floating-point value X is negative. */
347 #define REAL_VALUE_NEGATIVE(x) real_isneg (&(x))
348 
349 /* Determine whether a floating-point value X is minus zero. */
350 #define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x))
351 
352 /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
353 #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \
354  real_to_target (OUT, &(IN), \
355  mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0))
356 
357 #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
358  real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0))
359 
360 /* IN is a REAL_VALUE_TYPE. OUT is a long. */
361 #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
362  ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0)))
363 
364 #define REAL_VALUE_FROM_INT(r, lo, hi, mode) \
365  real_from_integer (&(r), mode, lo, hi, 0)
366 
367 #define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \
368  real_from_integer (&(r), mode, lo, hi, 1)
369 
370 /* Real values to IEEE 754 decimal floats. */
371 
372 /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
373 #define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
374  real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0))
375 
376 #define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
377  real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0))
378 
379 /* IN is a REAL_VALUE_TYPE. OUT is a long. */
380 #define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
381  ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0)))
382 
383 extern REAL_VALUE_TYPE real_value_truncate (enum machine_mode,
384  REAL_VALUE_TYPE);
385 
386 #define REAL_VALUE_TO_INT(plow, phigh, r) \
387  real_to_integer2 (plow, phigh, &(r))
388 
389 extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *);
390 extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *);
391 
392 extern int significand_size (enum machine_mode);
393 
394 extern REAL_VALUE_TYPE real_from_string2 (const char *, enum machine_mode);
395 
396 #define REAL_VALUE_ATOF(s, m) \
397  real_from_string2 (s, m)
398 
399 #define CONST_DOUBLE_ATOF(s, m) \
400  CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m)
401 
402 #define REAL_VALUE_FIX(r) \
403  real_to_integer (&(r))
404 
405 /* ??? Not quite right. */
406 #define REAL_VALUE_UNSIGNED_FIX(r) \
407  real_to_integer (&(r))
408 
409 /* ??? These were added for Paranoia support. */
410 
411 /* Return floor log2(R). */
412 extern int real_exponent (const REAL_VALUE_TYPE *);
413 
414 /* R = A * 2**EXP. */
415 extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
416 
417 /* **** End of software floating point emulator interface macros **** */
418 
419 /* Constant real values 0, 1, 2, -1 and 0.5. */
420 
421 extern REAL_VALUE_TYPE dconst0;
422 extern REAL_VALUE_TYPE dconst1;
423 extern REAL_VALUE_TYPE dconst2;
424 extern REAL_VALUE_TYPE dconstm1;
425 extern REAL_VALUE_TYPE dconsthalf;
426 
427 #define dconst_e() (*dconst_e_ptr ())
428 #define dconst_third() (*dconst_third_ptr ())
429 #define dconst_sqrt2() (*dconst_sqrt2_ptr ())
430 
431 /* Function to return the real value special constant 'e'. */
432 extern const REAL_VALUE_TYPE * dconst_e_ptr (void);
433 
434 /* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
435 extern const REAL_VALUE_TYPE * dconst_third_ptr (void);
436 
437 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
438 extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
439 
440 /* Function to return a real value (not a tree node)
441  from a given integer constant. */
443 
444 /* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */
445 #define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \
446  ((to) = *CONST_DOUBLE_REAL_VALUE (from))
447 
448 /* Return a CONST_DOUBLE with value R and mode M. */
449 #define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \
450  const_double_from_real_value (r, m)
451 extern rtx const_double_from_real_value (REAL_VALUE_TYPE, enum machine_mode);
452 
453 /* Replace R by 1/R in the given machine mode, if the result is exact. */
454 extern bool exact_real_inverse (enum machine_mode, REAL_VALUE_TYPE *);
455 
456 /* Return true if arithmetic on values in IMODE that were promoted
457  from values in TMODE is equivalent to direct arithmetic on values
458  in TMODE. */
459 bool real_can_shorten_arithmetic (enum machine_mode, enum machine_mode);
460 
461 /* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */
462 extern tree build_real (tree, REAL_VALUE_TYPE);
463 
464 /* Calculate R as the square root of X in the given machine mode. */
465 extern bool real_sqrt (REAL_VALUE_TYPE *, enum machine_mode,
466  const REAL_VALUE_TYPE *);
467 
468 /* Calculate R as X raised to the integer exponent N in mode MODE. */
469 extern bool real_powi (REAL_VALUE_TYPE *, enum machine_mode,
470  const REAL_VALUE_TYPE *, HOST_WIDE_INT);
471 
472 /* Standard round to integer value functions. */
473 extern void real_trunc (REAL_VALUE_TYPE *, enum machine_mode,
474  const REAL_VALUE_TYPE *);
475 extern void real_floor (REAL_VALUE_TYPE *, enum machine_mode,
476  const REAL_VALUE_TYPE *);
477 extern void real_ceil (REAL_VALUE_TYPE *, enum machine_mode,
478  const REAL_VALUE_TYPE *);
479 extern void real_round (REAL_VALUE_TYPE *, enum machine_mode,
480  const REAL_VALUE_TYPE *);
481 
482 /* Set the sign of R to the sign of X. */
483 extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
484 
485 /* Check whether the real constant value given is an integer. */
486 extern bool real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode);
487 
488 /* Write into BUF the maximum representable finite floating-point
489  number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
490  float string. BUF must be large enough to contain the result. */
491 extern void get_max_float (const struct real_format *, char *, size_t);
492 #endif /* ! GCC_REAL_H */