GCC Middle and Back End API Reference
Main Page
Namespaces
Data Structures
Files
File List
Globals
sparseset.h
Go to the documentation of this file.
1
/* SparseSet implementation.
2
Copyright (C) 2007-2013 Free Software Foundation, Inc.
3
Contributed by Peter Bergner <bergner@vnet.ibm.com>
4
5
This file is part of GCC.
6
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15
for more details.
16
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3. If not see
19
<http://www.gnu.org/licenses/>. */
20
21
#ifndef GCC_SPARSESET_H
22
#define GCC_SPARSESET_H
23
24
/* Implementation of the Briggs and Torczon sparse set representation.
25
The sparse set representation was first published in:
26
27
"An Efficient Representation for Sparse Sets",
28
ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.
29
30
The sparse set representation is suitable for integer sets with a
31
fixed-size universe. Two vectors are used to store the members of
32
the set. If an element I is in the set, then sparse[I] is the
33
index of I in the dense vector, and dense[sparse[I]] == I. The dense
34
vector works like a stack. The size of the stack is the cardinality
35
of the set.
36
37
The following operations can be performed in O(1) time:
38
39
* clear : sparseset_clear
40
* cardinality : sparseset_cardinality
41
* set_size : sparseset_size
42
* member_p : sparseset_bit_p
43
* add_member : sparseset_set_bit
44
* remove_member : sparseset_clear_bit
45
* choose_one : sparseset_pop
46
47
Additionally, the sparse set representation supports enumeration of
48
the members in O(N) time, where n is the number of members in the set.
49
The members of the set are stored cache-friendly in the dense vector.
50
This makes it a competitive choice for iterating over relatively sparse
51
sets requiring operations:
52
53
* forall : EXECUTE_IF_SET_IN_SPARSESET
54
* set_copy : sparseset_copy
55
* set_intersection : sparseset_and
56
* set_union : sparseset_ior
57
* set_difference : sparseset_and_compl
58
* set_disjuction : (not implemented)
59
* set_compare : sparseset_equal_p
60
61
NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET.
62
The iterator is updated for it.
63
64
Based on the efficiency of these operations, this representation of
65
sparse sets will often be superior to alternatives such as simple
66
bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees,
67
hash tables, linked lists, etc., if the set is sufficiently sparse.
68
In the LOPLAS paper the cut-off point where sparse sets became faster
69
than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the
70
size of the universe of the set).
71
72
Because the set universe is fixed, the set cannot be resized. For
73
sparse sets with initially unknown size, linked-list bitmaps are a
74
better choice, see bitmap.h.
75
76
Sparse sets storage requirements are relatively large: O(U) with a
77
larger constant than sbitmaps (if the storage requirement for an
78
sbitmap with universe U is S, then the storage required for a sparse
79
set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S).
80
Accessing the sparse vector is not very cache-friendly, but iterating
81
over the members in the set is cache-friendly because only the dense
82
vector is used. */
83
84
/* Data Structure used for the SparseSet representation. */
85
86
#define SPARSESET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
87
#define SPARSESET_ELT_TYPE unsigned HOST_WIDEST_FAST_INT
88
89
typedef
struct
sparseset_def
90
{
91
SPARSESET_ELT_TYPE
*
dense
;
/* Dense array. */
92
SPARSESET_ELT_TYPE
*
sparse
;
/* Sparse array. */
93
SPARSESET_ELT_TYPE
members
;
/* Number of elements. */
94
SPARSESET_ELT_TYPE
size
;
/* Maximum number of elements. */
95
SPARSESET_ELT_TYPE
iter
;
/* Iterator index. */
96
unsigned
char
iter_inc
;
/* Iteration increment amount. */
97
bool
iterating
;
98
SPARSESET_ELT_TYPE
elms
[2];
/* Combined dense and sparse arrays. */
99
} *
sparseset
;
100
101
#define sparseset_free(MAP) free(MAP)
102
extern
sparseset
sparseset_alloc
(
SPARSESET_ELT_TYPE
n_elms);
103
extern
void
sparseset_clear_bit
(
sparseset
,
SPARSESET_ELT_TYPE
);
104
extern
void
sparseset_copy
(
sparseset
,
sparseset
);
105
extern
void
sparseset_and
(
sparseset
,
sparseset
,
sparseset
);
106
extern
void
sparseset_and_compl
(
sparseset
,
sparseset
,
sparseset
);
107
extern
void
sparseset_ior
(
sparseset
,
sparseset
,
sparseset
);
108
extern
bool
sparseset_equal_p
(
sparseset
,
sparseset
);
109
110
/* Operation: S = {}
111
Clear the set of all elements. */
112
113
static
inline
void
114
sparseset_clear
(
sparseset
s)
115
{
116
s->
members
= 0;
117
s->
iterating
=
false
;
118
}
119
120
/* Return the number of elements currently in the set. */
121
122
static
inline
SPARSESET_ELT_TYPE
123
sparseset_cardinality
(
sparseset
s)
124
{
125
return
s->
members
;
126
}
127
128
/* Return the maximum number of elements this set can hold. */
129
130
static
inline
SPARSESET_ELT_TYPE
131
sparseset_size
(
sparseset
s)
132
{
133
return
s->
size
;
134
}
135
136
/* Return true if e is a member of the set S, otherwise return false. */
137
138
static
inline
bool
139
sparseset_bit_p
(
sparseset
s,
SPARSESET_ELT_TYPE
e)
140
{
141
SPARSESET_ELT_TYPE
idx;
142
143
gcc_checking_assert
(e < s->size);
144
145
idx = s->
sparse
[e];
146
147
return
idx < s->
members
&& s->
dense
[idx] == e;
148
}
149
150
/* Low level insertion routine not meant for use outside of sparseset.[ch].
151
Assumes E is valid and not already a member of the set S. */
152
153
static
inline
void
154
sparseset_insert_bit
(
sparseset
s,
SPARSESET_ELT_TYPE
e,
SPARSESET_ELT_TYPE
idx)
155
{
156
s->
sparse
[e] = idx;
157
s->
dense
[idx] = e;
158
}
159
160
/* Operation: S = S + {e}
161
Insert E into the set S, if it isn't already a member. */
162
163
static
inline
void
164
sparseset_set_bit
(
sparseset
s,
SPARSESET_ELT_TYPE
e)
165
{
166
if
(!
sparseset_bit_p
(s, e))
167
sparseset_insert_bit
(s, e, s->
members
++);
168
}
169
170
/* Return and remove the last member added to the set S. */
171
172
static
inline
SPARSESET_ELT_TYPE
173
sparseset_pop
(
sparseset
s)
174
{
175
SPARSESET_ELT_TYPE
mem = s->
members
;
176
177
gcc_checking_assert
(mem != 0);
178
179
s->
members
= mem - 1;
180
return
s->
dense
[mem];
181
}
182
183
static
inline
void
184
sparseset_iter_init
(
sparseset
s)
185
{
186
s->
iter
= 0;
187
s->
iter_inc
= 1;
188
s->
iterating
=
true
;
189
}
190
191
static
inline
bool
192
sparseset_iter_p
(
sparseset
s)
193
{
194
if
(s->
iterating
&& s->
iter
< s->
members
)
195
return
true
;
196
else
197
return
s->
iterating
=
false
;
198
}
199
200
static
inline
SPARSESET_ELT_TYPE
201
sparseset_iter_elm
(
sparseset
s)
202
{
203
return
s->
dense
[s->
iter
];
204
}
205
206
static
inline
void
207
sparseset_iter_next
(
sparseset
s)
208
{
209
s->
iter
+= s->
iter_inc
;
210
s->
iter_inc
= 1;
211
}
212
213
#define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER) \
214
for (sparseset_iter_init (SPARSESET); \
215
sparseset_iter_p (SPARSESET) \
216
&& (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \
217
sparseset_iter_next (SPARSESET))
218
219
#endif
/* GCC_SPARSESET_H */
gcc
sparseset.h
Generated by
1.8.1.1