GCC Middle and Back End API Reference
sparseset.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Data Structures

struct  sparseset_def

Macros

#define SPARSESET_ELT_BITS   ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
#define SPARSESET_ELT_TYPE   unsigned HOST_WIDEST_FAST_INT
#define sparseset_free(MAP)   free(MAP)
#define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER)

Typedefs

typedef struct sparseset_defsparseset

Functions

sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms)
void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE)
void sparseset_copy (sparseset, sparseset)
void sparseset_and (sparseset, sparseset, sparseset)
void sparseset_and_compl (sparseset, sparseset, sparseset)
void sparseset_ior (sparseset, sparseset, sparseset)
bool sparseset_equal_p (sparseset, sparseset)
static void sparseset_clear ()
static SPARSESET_ELT_TYPE sparseset_cardinality ()
static SPARSESET_ELT_TYPE sparseset_size ()
static bool sparseset_bit_p ()
static void sparseset_insert_bit ()
static void sparseset_set_bit ()
static SPARSESET_ELT_TYPE sparseset_pop ()
static void sparseset_iter_init ()
static bool sparseset_iter_p ()
static SPARSESET_ELT_TYPE sparseset_iter_elm ()
static void sparseset_iter_next ()

Macro Definition Documentation

#define EXECUTE_IF_SET_IN_SPARSESET (   SPARSESET,
  ITER 
)
Value:
for (sparseset_iter_init (SPARSESET); \
sparseset_iter_p (SPARSESET) \
&& (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \
sparseset_iter_next (SPARSESET))

Referenced by dec_register_pressure(), lra_intersected_live_ranges_p(), process_bb_node_lives(), and sparseset_ior().

#define SPARSESET_ELT_BITS   ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)

SparseSet implementation. Copyright (C) 2007-2013 Free Software Foundation, Inc. Contributed by Peter Bergner bergn.nosp@m.er@v.nosp@m.net.i.nosp@m.bm.c.nosp@m.om

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see http://www.gnu.org/licenses/. Implementation of the Briggs and Torczon sparse set representation. The sparse set representation was first published in:

"An Efficient Representation for Sparse Sets", ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.

The sparse set representation is suitable for integer sets with a fixed-size universe. Two vectors are used to store the members of the set. If an element I is in the set, then sparse[I] is the index of I in the dense vector, and dense[sparse[I]] == I. The dense vector works like a stack. The size of the stack is the cardinality of the set.

The following operations can be performed in O(1) time:

clear                    : sparseset_clear
cardinality              : sparseset_cardinality
set_size                 : sparseset_size
member_p                 : sparseset_bit_p
add_member               : sparseset_set_bit
remove_member            : sparseset_clear_bit
choose_one               : sparseset_pop

Additionally, the sparse set representation supports enumeration of the members in O(N) time, where n is the number of members in the set. The members of the set are stored cache-friendly in the dense vector. This makes it a competitive choice for iterating over relatively sparse sets requiring operations:

forall                   : EXECUTE_IF_SET_IN_SPARSESET
set_copy                 : sparseset_copy
set_intersection         : sparseset_and
set_union                : sparseset_ior
set_difference           : sparseset_and_compl
set_disjuction           : (not implemented)
set_compare              : sparseset_equal_p

NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET. The iterator is updated for it.

Based on the efficiency of these operations, this representation of sparse sets will often be superior to alternatives such as simple bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees, hash tables, linked lists, etc., if the set is sufficiently sparse. In the LOPLAS paper the cut-off point where sparse sets became faster than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the size of the universe of the set).

Because the set universe is fixed, the set cannot be resized. For sparse sets with initially unknown size, linked-list bitmaps are a better choice, see bitmap.h.

Sparse sets storage requirements are relatively large: O(U) with a larger constant than sbitmaps (if the storage requirement for an sbitmap with universe U is S, then the storage required for a sparse set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S). Accessing the sparse vector is not very cache-friendly, but iterating over the members in the set is cache-friendly because only the dense vector is used. Data Structure used for the SparseSet representation.

#define SPARSESET_ELT_TYPE   unsigned HOST_WIDEST_FAST_INT
#define sparseset_free (   MAP)    free(MAP)

Typedef Documentation

typedef struct sparseset_def * sparseset

Function Documentation

sparseset sparseset_alloc ( SPARSESET_ELT_TYPE  n_elms)
void sparseset_and ( sparseset  ,
sparseset  ,
sparseset   
)
void sparseset_and_compl ( sparseset  ,
sparseset  ,
sparseset   
)
static bool sparseset_bit_p ( )
inlinestatic

Return true if e is a member of the set S, otherwise return false.

Referenced by mark_pseudo_regno_live(), mark_regno_live(), process_bb_node_lives(), and sparseset_insert_bit().

static SPARSESET_ELT_TYPE sparseset_cardinality ( )
inlinestatic

Return the number of elements currently in the set.

References sparseset_def::size.

static void sparseset_clear ( )
inlinestatic

Operation: S = {} Clear the set of all elements.

Referenced by find_call_crossed_cheap_reg(), and process_bb_node_lives().

void sparseset_clear_bit ( sparseset  ,
SPARSESET_ELT_TYPE   
)
void sparseset_copy ( sparseset  ,
sparseset   
)
bool sparseset_equal_p ( sparseset  ,
sparseset   
)
static void sparseset_insert_bit ( )
inlinestatic

Low level insertion routine not meant for use outside of sparseset.[ch]. Assumes E is valid and not already a member of the set S.

References sparseset_def::members, and sparseset_bit_p().

void sparseset_ior ( sparseset  ,
sparseset  ,
sparseset   
)
static SPARSESET_ELT_TYPE sparseset_iter_elm ( )
inlinestatic
static void sparseset_iter_init ( )
inlinestatic
static void sparseset_iter_next ( )
inlinestatic
static bool sparseset_iter_p ( )
inlinestatic
static SPARSESET_ELT_TYPE sparseset_pop ( )
inlinestatic

Return and remove the last member added to the set S.

References sparseset_def::iter, sparseset_def::iter_inc, and sparseset_def::iterating.

static void sparseset_set_bit ( )
inlinestatic

Operation: S = S + {e} Insert E into the set S, if it isn't already a member.

References sparseset_def::dense, gcc_checking_assert, sparseset_def::members, and SPARSESET_ELT_TYPE.

Referenced by lra_intersected_live_ranges_p(), process_bb_node_lives(), sparseset_ior(), and spill_for().

static SPARSESET_ELT_TYPE sparseset_size ( )
inlinestatic

Return the maximum number of elements this set can hold.

References gcc_checking_assert, sparseset_def::sparse, and SPARSESET_ELT_TYPE.