Consider this C function:
int square (int i)
{
  return i * i;
}
How can we construct this at run-time using libgccjit?
First we need to include the relevant header:
#include <libgccjit.h>
All state associated with compilation is associated with a gcc_jit_context *.
Create one using gcc_jit_context_acquire():
gcc_jit_context *ctxt;
ctxt = gcc_jit_context_acquire ();
The JIT library has a system of types. It is statically-typed: every expression is of a specific type, fixed at compile-time. In our example, all of the expressions are of the C int type, so let’s obtain this from the context, as a gcc_jit_type *, using gcc_jit_context_get_type():
gcc_jit_type *int_type =
  gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
gcc_jit_type * is an example of a “contextual” object: every entity in the API is associated with a gcc_jit_context *.
Memory management is easy: all such “contextual” objects are automatically cleaned up for you when the context is released, using gcc_jit_context_release():
gcc_jit_context_release (ctxt);
so you don’t need to manually track and cleanup all objects, just the contexts.
Although the API is C-based, there is a form of class hierarchy, which looks like this:
+- gcc_jit_object
    +- gcc_jit_location
    +- gcc_jit_type
       +- gcc_jit_struct
    +- gcc_jit_field
    +- gcc_jit_function
    +- gcc_jit_block
    +- gcc_jit_rvalue
        +- gcc_jit_lvalue
           +- gcc_jit_param
There are casting methods for upcasting from subclasses to parent classes. For example, gcc_jit_type_as_object():
gcc_jit_object *obj = gcc_jit_type_as_object (int_type);
One thing you can do with a gcc_jit_object * is to ask it for a human-readable description, using gcc_jit_object_get_debug_string():
printf ("obj: %s\n", gcc_jit_object_get_debug_string (obj));
giving this text on stdout:
obj: int
This is invaluable when debugging.
Let’s create the function. To do so, we first need to construct its single parameter, specifying its type and giving it a name, using gcc_jit_context_new_param():
gcc_jit_param *param_i =
  gcc_jit_context_new_param (ctxt, NULL, int_type, "i");
Now we can create the function, using gcc_jit_context_new_function():
gcc_jit_function *func =
  gcc_jit_context_new_function (ctxt, NULL,
                                GCC_JIT_FUNCTION_EXPORTED,
                                int_type,
                                "square",
                                1, ¶m_i,
                                0);
To define the code within the function, we must create basic blocks containing statements.
Every basic block contains a list of statements, eventually terminated by a statement that either returns, or jumps to another basic block.
Our function has no control-flow, so we just need one basic block:
gcc_jit_block *block = gcc_jit_function_new_block (func, NULL);
Our basic block is relatively simple: it immediately terminates by returning the value of an expression.
We can build the expression using gcc_jit_context_new_binary_op():
gcc_jit_rvalue *expr =
  gcc_jit_context_new_binary_op (
    ctxt, NULL,
    GCC_JIT_BINARY_OP_MULT, int_type,
    gcc_jit_param_as_rvalue (param_i),
    gcc_jit_param_as_rvalue (param_i));
A gcc_jit_rvalue * is another example of a gcc_jit_object * subclass. We can upcast it using gcc_jit_rvalue_as_object() and as before print it with gcc_jit_object_get_debug_string().
printf ("expr: %s\n",
        gcc_jit_object_get_debug_string (
          gcc_jit_rvalue_as_object (expr)));
giving this output:
expr: i * i
Creating the expression in itself doesn’t do anything; we have to add this expression to a statement within the block. In this case, we use it to build a return statement, which terminates the basic block:
gcc_jit_block_end_with_return (block, NULL, expr);
OK, we’ve populated the context. We can now compile it using gcc_jit_context_compile():
gcc_jit_result *result;
result = gcc_jit_context_compile (ctxt);
and get a gcc_jit_result *.
We can now use gcc_jit_result_get_code() to look up a specific machine code routine within the result, in this case, the function we created above.
void *fn_ptr = gcc_jit_result_get_code (result, "square");
if (!fn_ptr)
  {
    fprintf (stderr, "NULL fn_ptr");
    goto error;
  }
We can now cast the pointer to an appropriate function pointer type, and then call it:
typedef int (*fn_type) (int);
fn_type square = (fn_type)fn_ptr;
printf ("result: %d", square (5));
result: 25
To get more information on what’s going on, you can set debugging flags on the context using gcc_jit_context_set_bool_option().
Setting GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE will dump a C-like representation to stderr when you compile (GCC’s “GIMPLE” representation):
gcc_jit_context_set_bool_option (
  ctxt,
  GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
  1);
result = gcc_jit_context_compile (ctxt);
square (signed int i)
{
  signed int D.260;
  entry:
  D.260 = i * i;
  return D.260;
}
We can see the generated machine code in assembler form (on stderr) by setting GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE on the context before compiling:
gcc_jit_context_set_bool_option (
  ctxt,
  GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE,
  1);
result = gcc_jit_context_compile (ctxt);
      .file   "fake.c"
      .text
      .globl  square
      .type   square, @function
square:
.LFB6:
      .cfi_startproc
      pushq   %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset 6, -16
      movq    %rsp, %rbp
      .cfi_def_cfa_register 6
      movl    %edi, -4(%rbp)
.L14:
      movl    -4(%rbp), %eax
      imull   -4(%rbp), %eax
      popq    %rbp
      .cfi_def_cfa 7, 8
      ret
      .cfi_endproc
.LFE6:
      .size   square, .-square
      .ident  "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
      .section       .note.GNU-stack,"",@progbits
By default, no optimizations are performed, the equivalent of GCC’s -O0 option. We can turn things up to e.g. -O3 by calling gcc_jit_context_set_int_option() with GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL:
gcc_jit_context_set_int_option (
  ctxt,
  GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
  3);
      .file   "fake.c"
      .text
      .p2align 4,,15
      .globl  square
      .type   square, @function
square:
.LFB7:
      .cfi_startproc
.L16:
      movl    %edi, %eax
      imull   %edi, %eax
      ret
      .cfi_endproc
.LFE7:
      .size   square, .-square
      .ident  "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
      .section        .note.GNU-stack,"",@progbits
Naturally this has only a small effect on such a trivial function.
Here’s what the above looks like as a complete program:
/* Usage example for libgccjit.so Copyright (C) 2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include <libgccjit.h> #include <stdlib.h> #include <stdio.h> void create_code (gcc_jit_context *ctxt) { /* Let's try to inject the equivalent of: int square (int i) { return i * i; } */ gcc_jit_type *int_type = gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT); gcc_jit_param *param_i = gcc_jit_context_new_param (ctxt, NULL, int_type, "i"); gcc_jit_function *func = gcc_jit_context_new_function (ctxt, NULL, GCC_JIT_FUNCTION_EXPORTED, int_type, "square", 1, ¶m_i, 0); gcc_jit_block *block = gcc_jit_function_new_block (func, NULL); gcc_jit_rvalue *expr = gcc_jit_context_new_binary_op ( ctxt, NULL, GCC_JIT_BINARY_OP_MULT, int_type, gcc_jit_param_as_rvalue (param_i), gcc_jit_param_as_rvalue (param_i)); gcc_jit_block_end_with_return (block, NULL, expr); } int main (int argc, char **argv) { gcc_jit_context *ctxt = NULL; gcc_jit_result *result = NULL; /* Get a "context" object for working with the library. */ ctxt = gcc_jit_context_acquire (); if (!ctxt) { fprintf (stderr, "NULL ctxt"); goto error; } /* Set some options on the context. Let's see the code being generated, in assembler form. */ gcc_jit_context_set_bool_option ( ctxt, GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE, 0); /* Populate the context. */ create_code (ctxt); /* Compile the code. */ result = gcc_jit_context_compile (ctxt); if (!result) { fprintf (stderr, "NULL result"); goto error; } /* Extract the generated code from "result". */ void *fn_ptr = gcc_jit_result_get_code (result, "square"); if (!fn_ptr) { fprintf (stderr, "NULL fn_ptr"); goto error; } typedef int (*fn_type) (int); fn_type square = (fn_type)fn_ptr; printf ("result: %d", square (5)); error: gcc_jit_context_release (ctxt); gcc_jit_result_release (result); return 0; }
Building and running it:
$ gcc \
    tut02-square.c \
    -o tut02-square \
    -lgccjit
# Run the built program:
$ ./tut02-square
result: 25