GCC Middle and Back End API Reference
reload.h File Reference

Go to the source code of this file.

Data Structures

struct  reload
struct  target_reload
struct  reg_equivs_s
struct  insn_chain

Typedefs

typedef struct reg_equivs_s reg_equivs_t

Enumerations

enum  reload_type {
  RELOAD_FOR_INPUT, RELOAD_FOR_OUTPUT, RELOAD_FOR_INSN, RELOAD_FOR_INPUT_ADDRESS,
  RELOAD_FOR_INPADDR_ADDRESS, RELOAD_FOR_OUTPUT_ADDRESS, RELOAD_FOR_OUTADDR_ADDRESS, RELOAD_FOR_OPERAND_ADDRESS,
  RELOAD_FOR_OPADDR_ADDR, RELOAD_OTHER, RELOAD_FOR_OTHER_ADDRESS
}

Functions

int register_move_cost (enum machine_mode, reg_class_t, reg_class_t)
int memory_move_cost (enum machine_mode, reg_class_t, bool)
int memory_move_secondary_cost (enum machine_mode, reg_class_t, bool)
struct insn_chainnew_insn_chain (void)
void compute_use_by_pseudos (HARD_REG_SET *, bitmap)
reg_class_t secondary_reload_class (bool, reg_class_t, enum machine_mode, rtx)
enum reg_class scratch_reload_class (enum insn_code)
rtx get_secondary_mem (rtx, enum machine_mode, int, enum reload_type)
void clear_secondary_mem (void)
void transfer_replacements (int, int)
int remove_address_replacements (rtx in_rtx)
int operands_match_p (rtx, rtx)
int safe_from_earlyclobber (rtx, rtx)
int find_reloads (rtx, int, int, int, short *)
rtx form_sum (enum machine_mode, rtx, rtx)
void subst_reloads (rtx)
void copy_replacements (rtx, rtx)
void move_replacements (rtx *x, rtx *y)
rtx find_replacement (rtx *)
int reg_overlap_mentioned_for_reload_p (rtx, rtx)
rtx find_equiv_reg (rtx, rtx, enum reg_class, int, short *, int, enum machine_mode)
int regno_clobbered_p (unsigned int, rtx, enum machine_mode, int)
int earlyclobber_operand_p (rtx)
int push_reload (rtx, rtx, rtx *, rtx *, enum reg_class, enum machine_mode, enum machine_mode, int, int, int, enum reload_type)
void init_reload (void)
bool reload (rtx, int)
void mark_home_live (int)
rtx eliminate_regs (rtx, enum machine_mode, rtx)
bool elimination_target_reg_p (rtx)
void calculate_elim_costs_all_insns (void)
void deallocate_reload_reg (int r)
void init_caller_save (void)
void init_save_areas (void)
void setup_save_areas (void)
void save_call_clobbered_regs (void)
void cleanup_subreg_operands (rtx)
void debug_reload_to_stream (FILE *)
void debug_reload (void)
rtx reload_adjust_reg_for_mode (rtx, enum machine_mode)
void grow_reg_equivs (void)

Variables

struct reload rld [MAX_RELOADS]
int n_reloads
struct target_reload default_target_reload
struct target_reloadthis_target_reload
vec< reg_equivs_t, va_gc > * reg_equivs
int n_earlyclobbers
rtx reload_earlyclobbers [MAX_RECOG_OPERANDS]
int reload_n_operands
int reload_first_uid
int num_not_at_initial_offset
struct insn_chainreload_insn_chain

Typedef Documentation

typedef struct reg_equivs_s reg_equivs_t
Register equivalences.  Indexed by register number.   

Enumeration Type Documentation

Encode the usage of a reload.  The following codes are supported:

   RELOAD_FOR_INPUT             reload of an input operand
   RELOAD_FOR_OUTPUT            likewise, for output
   RELOAD_FOR_INSN              a reload that must not conflict with anything
                                used in the insn, but may conflict with
                                something used before or after the insn
   RELOAD_FOR_INPUT_ADDRESS     reload for parts of the address of an object
                                that is an input reload
   RELOAD_FOR_INPADDR_ADDRESS   reload needed for RELOAD_FOR_INPUT_ADDRESS
   RELOAD_FOR_OUTPUT_ADDRESS    like RELOAD_FOR INPUT_ADDRESS, for output
   RELOAD_FOR_OUTADDR_ADDRESS   reload needed for RELOAD_FOR_OUTPUT_ADDRESS
   RELOAD_FOR_OPERAND_ADDRESS   reload for the address of a non-reloaded
                                operand; these don't conflict with
                                any other addresses.
   RELOAD_FOR_OPADDR_ADDR       reload needed for RELOAD_FOR_OPERAND_ADDRESS
                                reloads; usually secondary reloads
   RELOAD_OTHER                 none of the above, usually multiple uses
   RELOAD_FOR_OTHER_ADDRESS     reload for part of the address of an input
                                that is marked RELOAD_OTHER.

   This used to be "enum reload_when_needed" but some debuggers have trouble
   with an enum tag and variable of the same name.   
Enumerator:
RELOAD_FOR_INPUT 
RELOAD_FOR_OUTPUT 
RELOAD_FOR_INSN 
RELOAD_FOR_INPUT_ADDRESS 
RELOAD_FOR_INPADDR_ADDRESS 
RELOAD_FOR_OUTPUT_ADDRESS 
RELOAD_FOR_OUTADDR_ADDRESS 
RELOAD_FOR_OPERAND_ADDRESS 
RELOAD_FOR_OPADDR_ADDR 
RELOAD_OTHER 
RELOAD_FOR_OTHER_ADDRESS 

Function Documentation

void calculate_elim_costs_all_insns ( void  )
Called from the register allocator to estimate costs of eliminating
   invariant registers.   
This function is called from the register allocator to set up estimates
   for the cost of eliminating pseudos which have REG_EQUIV equivalences to
   an invariant.  The structure is similar to calculate_needs_all_insns.   

References dump_file, eliminate_regs_1(), elimination_costs_in_insn(), free(), get_insns(), init_elim_table(), init_eliminable_invariants(), insn_chain::insn, ira_adjust_equiv_reg_cost(), max_regno, num_eliminable, num_eliminable_invariants, offsets_at, offsets_known_at, optimize_bb_for_speed_p(), reg_renumber, set_initial_elim_offsets(), set_initial_label_offsets(), set_label_offsets(), set_src_cost(), and update_eliminable_offsets().

Referenced by ira_costs().

void cleanup_subreg_operands ( rtx  )
Replace (subreg (reg)) with the appropriate (reg) for any operands.   
void clear_secondary_mem ( void  )
Clear any secondary memory locations we've made.   

References memset(), and secondary_memlocs.

Referenced by reload().

void compute_use_by_pseudos ( HARD_REG_SET ,
bitmap   
)
void copy_replacements ( rtx  ,
rtx   
)
Make a copy of any replacements being done into X and move those copies
   to locations in Y, a copy of X.  We only look at the highest level of
   the RTL.   
void deallocate_reload_reg ( int  r)
Deallocate the reload register used by reload number R.   

Referenced by remove_address_replacements().

void debug_reload ( void  )
void debug_reload_to_stream ( FILE *  )
Debugging support.   
int earlyclobber_operand_p ( rtx  )
Return 1 if X is an operand of an insn that is being earlyclobbered.   
rtx eliminate_regs ( rtx  ,
enum  machine_mode,
rtx   
)
bool elimination_target_reg_p ( rtx  )

Referenced by find_reloads().

rtx find_equiv_reg ( rtx  goal,
rtx  insn,
enum reg_class  rclass,
int  other,
short *  reload_reg_p,
int  goalreg,
enum machine_mode  mode 
)
Check the insns before INSN to see if there is a suitable register
   containing the same value as GOAL.   
Check the insns before INSN to see if there is a suitable register
   containing the same value as GOAL.
   If OTHER is -1, look for a register in class RCLASS.
   Otherwise, just see if register number OTHER shares GOAL's value.

   Return an rtx for the register found, or zero if none is found.

   If RELOAD_REG_P is (short *)1,
   we reject any hard reg that appears in reload_reg_rtx
   because such a hard reg is also needed coming into this insn.

   If RELOAD_REG_P is any other nonzero value,
   it is a vector indexed by hard reg number
   and we reject any hard reg whose element in the vector is nonnegative
   as well as any that appears in reload_reg_rtx.

   If GOAL is zero, then GOALREG is a register number; we look
   for an equivalent for that register.

   MODE is the machine mode of the value we want an equivalence for.
   If GOAL is nonzero and not VOIDmode, then it must have mode MODE.

   This function is used by jump.c as well as in the reload pass.

   If GOAL is the sum of the stack pointer and a constant, we treat it
   as if it were a constant except that sp is required to be unchanging.   

References end_hard_regno(), find_reg_note(), HOST_WIDE_INT, in_hard_reg_set_p(), replacement::mode, n_reloads, operand_subword(), push_operand(), refers_to_regno_for_reload_p(), reg_overlap_mentioned_for_reload_p(), reload_first_uid, rld, rtx_equal_p(), rtx_renumbered_equal_p(), SET, true_regnum(), volatile_insn_p(), and replacement::where.

Referenced by choose_reload_regs(), find_reloads(), and push_reload().

int find_reloads ( rtx  insn,
int  replace,
int  ind_levels,
int  live_known,
short *  reload_reg_p 
)
Search the body of INSN for values that need reloading and record them
   with push_reload.  REPLACE nonzero means record also where the values occur
   so that subst_reloads can be used.   
Main entry point of this file: search the body of INSN
   for values that need reloading and record them with push_reload.
   REPLACE nonzero means record also where the values occur
   so that subst_reloads can be used.

   IND_LEVELS says how many levels of indirection are supported by this
   machine; a value of zero means that a memory reference is not a valid
   memory address.

   LIVE_KNOWN says we have valid information about which hard
   regs are live at each point in the program; this is true when
   we are called from global_alloc but false when stupid register
   allocation has been done.

   RELOAD_REG_P if nonzero is a vector indexed by hard reg number
   which is nonnegative if the reg has been commandeered for reloading into.
   It is copied into STATIC_RELOAD_REG_P and referenced from there
   by various subroutines.

   Return TRUE if some operands need to be changed, because of swapping
   commutative operands, reg_equiv_address substitution, or whatever.   

References add_reg_note(), alternative_allows_const_pool_ref(), recog_data_d::alternative_enabled_p, base_reg_class(), cc0_rtx, combine_reloads(), recog_data_d::constraints, constraints, decompose(), recog_data_d::dup_loc, recog_data_d::dup_num, dup_replacements(), elimination_target_reg_p(), emit_insn_after(), emit_insn_before(), decomposition::end, error_for_asm(), extract_insn(), find_dummy_reload(), find_equiv_reg(), find_reg_note(), find_reloads(), find_reloads_address(), find_reloads_toplev(), force_const_mem(), gen_clobber(), gen_rtx_SUBREG(), get_address_mode(), hard_regs_live_known, immune_p(), reload::in, reload::in_reg, reload::inc, reload::inmode, insn_code_number, insn_data, recog_data_d::is_operator, label_is_jump_target_p(), len, memcpy(), memset(), reload::mode, n_alternatives(), recog_data_d::n_alternatives, recog_data_d::n_dups, n_earlyclobbers, recog_data_d::n_operands, n_reloads, n_replacements, nr, reload::nregs, num_not_at_initial_offset, offset, offsettable_memref_p(), offsettable_nonstrict_memref_p(), recog_data_d::operand, insn_data_d::operand, recog_data_d::operand_loc, recog_data_d::operand_mode, operands_match_p(), reload::opnum, reload::outmode, output_reloadnum, push_reload(), reload::rclass, recog_data, reg_alternate_class(), reg_class_subset_p(), reg_fits_class_p(), reg_mentioned_p(), reg_preferred_class(), reg_referenced_p(), reg_renumber, reload::reg_rtx, reg_set_p(), register_move_cost(), reject(), reload_earlyclobbers, RELOAD_FOR_INPADDR_ADDRESS, RELOAD_FOR_INPUT, RELOAD_FOR_INPUT_ADDRESS, RELOAD_FOR_INSN, RELOAD_FOR_OPADDR_ADDR, RELOAD_FOR_OPERAND_ADDRESS, RELOAD_FOR_OTHER_ADDRESS, RELOAD_FOR_OUTADDR_ADDRESS, RELOAD_FOR_OUTPUT, RELOAD_FOR_OUTPUT_ADDRESS, reload_n_operands, RELOAD_OTHER, replace_reloads, replacements, rld, rtx_equal_p(), RTX_UNARY, secondary_memlocs_elim, secondary_memlocs_elim_used, SET, set_unique_reg_note(), simplify_subreg_regno(), skip_alternative(), small_register_class_p(), static_reload_reg_p, insn_operand_data::strict_low, subreg_regno_offset(), targetm, this_insn, this_insn_is_asm, transfer_replacements(), type(), replacement::what, and reload::when_needed.

Referenced by calculate_needs_all_insns(), find_reloads(), and reload_as_needed().

rtx find_replacement ( rtx )
If LOC was scheduled to be replaced by something, return the replacement.
   Otherwise, return *LOC.   
rtx form_sum ( enum  machine_mode,
rtx  ,
rtx   
)
Compute the sum of X and Y, making canonicalizations assumed in an
   address, namely: sum constant integers, surround the sum of two
   constants with a CONST, put the constant as the second operand, and
   group the constant on the outermost sum.   
rtx get_secondary_mem ( rtx  x,
enum machine_mode  mode,
int  opnum,
enum reload_type  type 
)
Return a memory location that will be used to copy X in mode MODE.
   If we haven't already made a location for this mode in this insn,
   call find_reloads_address on the location being returned.   

References assign_stack_local(), copy_rtx(), eliminate_regs(), find_reloads_address(), mode_for_size(), RELOAD_FOR_INPUT, RELOAD_FOR_INPUT_ADDRESS, RELOAD_FOR_OUTPUT, RELOAD_FOR_OUTPUT_ADDRESS, RELOAD_OTHER, secondary_memlocs, secondary_memlocs_elim, secondary_memlocs_elim_used, and strict_memory_address_addr_space_p().

Referenced by choose_reload_regs(), gen_reload(), push_reload(), and push_secondary_reload().

void grow_reg_equivs ( void  )
Allocate or grow the reg_equiv tables, initializing new entries to 0.   
Grow (or allocate) the REG_EQUIVS array from its current size (which may be
   zero elements) to MAX_REG_NUM elements.

   Initialize all new fields to NULL and update REG_EQUIVS_SIZE.   

References max_reg_num(), max_regno, memset(), vec_safe_length(), and vec_safe_reserve().

Referenced by emit_move_list(), fix_reg_equiv_init(), init_eliminable_invariants(), ira(), reload(), and update_equiv_regs().

void init_caller_save ( void  )
Functions in caller-save.c:   
Initialize for caller-save.   
Initialize for caller-save.

   Look at all the hard registers that are used by a call and for which
   reginfo.c has not already excluded from being used across a call.

   Ensure that we can find a mode to save the register and that there is a
   simple insn to save and restore the register.  This latter check avoids
   problems that would occur if we tried to save the MQ register of some
   machines directly into memory.   

References base_reg_class(), gen_rtx_MEM(), gen_rtx_REG(), HOST_BITS_PER_INT, offset, reg_save_code(), restinsn, restpat, saveinsn, savepat, test_mem, and test_reg.

Referenced by ira().

void init_reload ( void  )
Functions in reload1.c:   
Initialize the reload pass once per compilation.   
Initialize the reload pass.  This is called at the beginning of compilation
   and may be called again if the target is reinitialized.   

References gen_rtx_MEM(), gen_rtx_REG(), plus_constant(), reload_obstack, and reload_startobj.

Referenced by backend_init_target().

void init_save_areas ( void  )
Initialize save areas by showing that we haven't allocated any yet.   

References regno_save_mem, and save_slots_num.

Referenced by reload().

void mark_home_live ( int  )
Mark the slots in regs_ever_live for the hard regs
   used by pseudo-reg number REGNO.   

Referenced by allocno_reload_assign(), and reload().

int memory_move_cost ( enum  machine_mode,
reg_class_t  ,
bool   
)
int memory_move_secondary_cost ( enum machine_mode  mode,
reg_class_t  rclass,
bool  in 
)
Compute extra cost of moving registers to/from memory due to reloads.
   Only needed if secondary reloads are required for memory moves.   

References memory_move_secondary_cost(), register_move_cost(), and secondary_reload_class().

Referenced by default_memory_move_cost(), and memory_move_secondary_cost().

void move_replacements ( rtx x,
rtx y 
)
Change any replacements being done to *X to be done to *Y  
struct insn_chain* new_insn_chain ( void  )
read
int operands_match_p ( rtx  ,
rtx   
)
Like rtx_equal_p except that it allows a REG and a SUBREG to match
   if they are the same hard reg, and has special hacks for
   autoincrement and autodecrement.   
int push_reload ( rtx  in,
rtx  out,
rtx inloc,
rtx outloc,
enum reg_class  rclass,
enum machine_mode  inmode,
enum machine_mode  outmode,
int  strict_low,
int  optional,
int  opnum,
enum reload_type  type 
)
Record one reload that needs to be performed.   
Record one reload that needs to be performed.
   IN is an rtx saying where the data are to be found before this instruction.
   OUT says where they must be stored after the instruction.
   (IN is zero for data not read, and OUT is zero for data not written.)
   INLOC and OUTLOC point to the places in the instructions where
   IN and OUT were found.
   If IN and OUT are both nonzero, it means the same register must be used
   to reload both IN and OUT.

   RCLASS is a register class required for the reloaded data.
   INMODE is the machine mode that the instruction requires
   for the reg that replaces IN and OUTMODE is likewise for OUT.

   If IN is zero, then OUT's location and mode should be passed as
   INLOC and INMODE.

   STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.

   OPTIONAL nonzero means this reload does not need to be performed:
   it can be discarded if that is more convenient.

   OPNUM and TYPE say what the purpose of this reload is.

   The return value is the reload-number for this reload.

   If both IN and OUT are nonzero, in some rare cases we might
   want to make two separate reloads.  (Actually we never do this now.)
   Therefore, the reload-number for OUT is stored in
   output_reloadnum when we return; the return value applies to IN.
   Usually (presently always), when IN and OUT are nonzero,
   the two reload-numbers are equal, but the caller should be careful to
   distinguish them.   

References bitmap_bit_p(), can_reload_into(), earlyclobber_operand_p(), end_hard_regno(), error_for_asm(), find_dummy_reload(), find_equiv_reg(), find_inc_amount(), find_reusable_reload(), find_valid_class(), find_valid_class_1(), gen_rtx_REG(), get_secondary_mem(), hard_reg_set_here_p(), hard_regs_live_known, reload::in, in_hard_reg_set_p(), reload::in_reg, reload::inc, reload::inmode, replacement::mode, n_reloads, n_replacements, reload::nocombine, reload::opnum, reload::optional, reload::out, reload::out_reg, reload::outmode, output_reloadnum, push_reload(), push_secondary_reload(), reload::rclass, refers_to_regno_for_reload_p(), reg_class_subset_p(), reg_mentioned_p(), reg_or_subregno(), reg_overlap_mentioned_for_reload_p(), reg_renumber, reload::reg_rtx, RELOAD_FOR_OUTPUT, reload_inner_reg_of_subreg(), RELOAD_OTHER, remove_address_replacements(), replace_equiv_address_nv(), replace_reloads, replacements, rld, rtx_equal_p(), reload::secondary_in_icode, reload::secondary_in_reload, reload::secondary_out_icode, reload::secondary_out_reload, reload::secondary_p, secondary_reload_class(), sets_cc0_p(), static_reload_reg_p, subreg_lowpart_p(), subreg_regno(), subreg_regno_offset(), targetm, this_insn, this_insn_is_asm, type(), replacement::what, reload::when_needed, replacement::where, and word_mode.

Referenced by find_reloads(), find_reloads_address(), find_reloads_address_1(), find_reloads_address_part(), find_reloads_subreg_address(), and push_reload().

int reg_overlap_mentioned_for_reload_p ( rtx  ,
rtx   
)
Nonzero if modifying X will affect IN.   
int register_move_cost ( enum  machine_mode,
reg_class_t  ,
reg_class_t   
)
int regno_clobbered_p ( unsigned int  regno,
rtx  insn,
enum machine_mode  mode,
int  sets 
)
Return 1 if register REGNO is the subject of a clobber in insn INSN.   
Return 1 if register REGNO is the subject of a clobber in insn INSN.
   If SETS is 1, also consider SETs.  If SETS is 2, enable checking
   REG_INC.  REGNO must refer to a hard register.   

References replacement::mode, reg_inc_found_and_valid_p(), and SET.

Referenced by choose_reload_regs(), emit_output_reload_insns(), find_reloads_address(), and find_reloads_address_1().

bool reload ( rtx  ,
int   
)
The reload pass itself.   

Referenced by do_reload().

rtx reload_adjust_reg_for_mode ( rtx  ,
enum  machine_mode 
)
Compute the actual register we should reload to, in case we're
   reloading to/from a register that is wider than a word.   
int remove_address_replacements ( rtx  in_rtx)
IN_RTX is the value loaded by a reload that we now decided to inherit,
   or a subpart of it.  If we have any replacements registered for IN_RTX,
   cancel the reloads that were supposed to load them.
   Return nonzero if we canceled any reloads.   
int safe_from_earlyclobber ( rtx  ,
rtx   
)
Return 1 if altering OP will not modify the value of CLOBBER.   
enum reg_class scratch_reload_class ( enum  insn_code)
reg_class_t secondary_reload_class ( bool  in_p,
reg_class_t  rclass,
enum machine_mode  mode,
rtx  x 
)
Functions from reload.c:   
If a secondary reload is needed, return its class.  If both an intermediate
   register and a scratch register is needed, we return the class of the
   intermediate register.   

References secondary_reload_info::icode, secondary_reload_info::prev_sri, scratch_reload_class(), and targetm.

Referenced by choose_reload_regs(), emit_output_reload_insns(), memory_move_secondary_cost(), and push_reload().

void setup_save_areas ( void  )
Allocate save areas for any hard registers that might need saving.   
Allocate save areas for any hard registers that might need saving.
   We take a conservative approach here and look for call-clobbered hard
   registers that are assigned to pseudos that cross calls.  This may
   overestimate slightly (especially if some of these registers are later
   used as spill registers), but it should not be significant.

   For IRA we use priority coloring to decrease stack slots needed for
   saving hard registers through calls.  We build conflicts for them
   to do coloring.

   Future work:

     In the fallback case we should iterate backwards across all possible
     modes for the save, choosing the largest available one instead of
     falling back to the smallest mode immediately.  (eg TF -> DF -> SF).

     We do not try to use "move multiple" instructions that exist
     on some machines (such as the 68k moveml).  It could be a win to try
     and use them when possible.  The hard part is doing it in a way that is
     machine independent since they might be saving non-consecutive
     registers. (imagine caller-saving d0,d1,a0,a1 on the 68k)  

References assign_stack_local_1(), saved_hard_reg::call_freq, dump_file, find_reg_note(), finish_saved_hard_regs(), saved_hard_reg::first_p, free(), get_frame_alias_set(), saved_hard_reg::hard_regno, initiate_saved_hard_regs(), insn_chain::insn, insn_chain::live_throughout, mark_set_regs(), memcpy(), memset(), new_saved_hard_reg(), insn_chain::next, saved_hard_reg::next, note_stores(), saved_hard_reg::num, reg_renumber, regno_reg_rtx, regno_save_mem, reload_insn_chain, save_slots, save_slots_num, saved_hard_reg_compare_func(), saved_regs_num, set_mem_alias_set(), saved_hard_reg::slot, and used_regs.

Referenced by reload().

void subst_reloads ( rtx  )
Substitute into the current INSN the registers into which we have reloaded
   the things that need reloading.   
void transfer_replacements ( int  ,
int   
)
Transfer all replacements that used to be in reload FROM to be in
   reload TO.   

Variable Documentation

struct target_reload default_target_reload
@verbatim Reload pseudo regs into hard regs for insns that require hard regs.

Copyright (C) 1987-2013 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see http://www.gnu.org/licenses/.

This file contains the reload pass of the compiler, which is
   run after register allocation has been done.  It checks that
   each insn is valid (operands required to be in registers really
   are in registers of the proper class) and fixes up invalid ones
   by copying values temporarily into registers for the insns
   that need them.

   The results of register allocation are described by the vector
   reg_renumber; the insns still contain pseudo regs, but reg_renumber
   can be used to find which hard reg, if any, a pseudo reg is in.

   The technique we always use is to free up a few hard regs that are
   called ``reload regs'', and for each place where a pseudo reg
   must be in a hard reg, copy it temporarily into one of the reload regs.

   Reload regs are allocated locally for every instruction that needs
   reloads.  When there are pseudos which are allocated to a register that
   has been chosen as a reload reg, such pseudos must be ``spilled''.
   This means that they go to other hard regs, or to stack slots if no other
   available hard regs can be found.  Spilling can invalidate more
   insns, requiring additional need for reloads, so we must keep checking
   until the process stabilizes.

   For machines with different classes of registers, we must keep track
   of the register class needed for each reload, and make sure that
   we allocate enough reload registers of each class.

   The file reload.c contains the code that checks one insn for
   validity and reports the reloads that it needs.  This file
   is in charge of scanning the entire rtl code, accumulating the
   reload needs, spilling, assigning reload registers to use for
   fixing up each insn, and generating the new insns to copy values
   into the reload registers.   
int n_earlyclobbers
All the "earlyclobber" operands of the current insn
   are recorded here.   

Referenced by choose_reload_regs(), earlyclobber_operand_p(), and find_reloads().

int num_not_at_initial_offset
Record the number of pending eliminations that have an offset not equal
   to their initial offset.  If nonzero, we use a new copy of each
   replacement result in any insns encountered.   

Referenced by emit_input_reload_insns(), find_reloads(), find_reloads_address(), find_reloads_address_1(), find_reloads_toplev(), set_initial_elim_offsets(), set_offsets_for_label(), subst_reg_equivs(), and update_eliminable_offsets().

rtx reload_earlyclobbers[MAX_RECOG_OPERANDS]
int reload_first_uid
First uid used by insns created by reload in this function.
   Used in find_equiv_reg.   

Referenced by delete_address_reloads_1(), find_equiv_reg(), and reload().

struct insn_chain* reload_insn_chain
A chain of insn_chain structures to describe all non-note insns in
   a function.   
List of insn_chain instructions, one for every insn that reload needs to
   examine.   

Referenced by build_insn_chain(), delete_caller_save_insns(), insert_one_insn(), print_insn_chains(), save_call_clobbered_regs(), and setup_save_areas().

int reload_n_operands
struct target_reload* this_target_reload