GCC Middle and Back End API Reference
basic-block.h
Go to the documentation of this file.
1 /* Define control flow data structures for the CFG.
2  Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19 
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22 
23 #include "predict.h"
24 #include "vec.h"
25 #include "function.h"
26 
27 /* Use gcov_type to hold basic block counters. Should be at least
28  64bit. Although a counter cannot be negative, we use a signed
29  type, because erroneous negative counts can be generated when the
30  flow graph is manipulated by various optimizations. A signed type
31  makes those easy to detect. */
32 
33 /* Control flow edge information. */
34 struct GTY((user)) edge_def {
35  /* The two blocks at the ends of the edge. */
36  basic_block src;
38 
39  /* Instructions queued on the edge. */
42  rtx r;
43  } insns;
44 
45  /* Auxiliary info specific to a pass. */
46  PTR aux;
47 
48  /* Location of any goto implicit in the edge. */
49  location_t goto_locus;
50 
51  /* The index number corresponding to this edge in the edge vector
52  dest->preds. */
53  unsigned int dest_idx;
54 
55  int flags; /* see cfg-flags.def */
56  int probability; /* biased by REG_BR_PROB_BASE */
57  gcov_type count; /* Expected number of executions calculated
58  in profile.c */
59 };
60 
61 
62 /* Garbage collection and PCH support for edge_def. */
63 extern void gt_ggc_mx (edge_def *e);
64 extern void gt_pch_nx (edge_def *e);
65 extern void gt_pch_nx (edge_def *e, gt_pointer_operator, void *);
66 
67 /* Masks for edge.flags. */
68 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
69 enum cfg_edge_flags {
70 #include "cfg-flags.def"
71  LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
72 };
73 #undef DEF_EDGE_FLAG
74 
75 /* Bit mask for all edge flags. */
76 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
77 
78 /* The following four flags all indicate something special about an edge.
79  Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
80  control flow transfers. */
81 #define EDGE_COMPLEX \
82  (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
83 
84 /* Counter summary from the last set of coverage counts read by
85  profile.c. */
86 extern const struct gcov_ctr_summary *profile_info;
87 
88 /* Structure to gather statistic about profile consistency, per pass.
89  An array of this structure, indexed by pass static number, is allocated
90  in passes.c. The structure is defined here so that different CFG modes
91  can do their book-keeping via CFG hooks.
92 
93  For every field[2], field[0] is the count before the pass runs, and
94  field[1] is the post-pass count. This allows us to monitor the effect
95  of each individual pass on the profile consistency.
96 
97  This structure is not supposed to be used by anything other than passes.c
98  and one CFG hook per CFG mode. */
99 struct profile_record
100 {
101  /* The number of basic blocks where sum(freq) of the block's predecessors
102  doesn't match reasonably well with the incoming frequency. */
103  int num_mismatched_freq_in[2];
104  /* Likewise for a basic block's successors. */
106  /* The number of basic blocks where sum(count) of the block's predecessors
107  doesn't match reasonably well with the incoming frequency. */
109  /* Likewise for a basic block's successors. */
111  /* A weighted cost of the run-time of the function body. */
112  gcov_type time[2];
113  /* A weighted cost of the size of the function body. */
114  int size[2];
115  /* True iff this pass actually was run. */
116  bool run;
117 };
119 /* Declared in cfgloop.h. */
120 struct loop;
122 struct GTY(()) rtl_bb_info {
123  /* The first insn of the block is embedded into bb->il.x. */
124  /* The last insn of the block. */
125  rtx end_;
126 
127  /* In CFGlayout mode points to insn notes/jumptables to be placed just before
128  and after the block. */
129  rtx header_;
130  rtx footer_;
131 };
132 
133 struct GTY(()) gimple_bb_info {
134  /* Sequence of statements in this block. */
135  gimple_seq seq;
136 
137  /* PHI nodes for this block. */
139 };
140 
141 /* A basic block is a sequence of instructions with only one entry and
142  only one exit. If any one of the instructions are executed, they
143  will all be executed, and in sequence from first to last.
145  There may be COND_EXEC instructions in the basic block. The
146  COND_EXEC *instructions* will be executed -- but if the condition
147  is false the conditionally executed *expressions* will of course
148  not be executed. We don't consider the conditionally executed
149  expression (which might have side-effects) to be in a separate
150  basic block because the program counter will always be at the same
151  location after the COND_EXEC instruction, regardless of whether the
152  condition is true or not.
153 
154  Basic blocks need not start with a label nor end with a jump insn.
155  For example, a previous basic block may just "conditionally fall"
156  into the succeeding basic block, and the last basic block need not
157  end with a jump insn. Block 0 is a descendant of the entry block.
159  A basic block beginning with two labels cannot have notes between
160  the labels.
162  Data for jump tables are stored in jump_insns that occur in no
163  basic block even though these insns can follow or precede insns in
164  basic blocks. */
166 /* Basic block information indexed by block number. */
167 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
168  /* The edges into and out of the block. */
169  vec<edge, va_gc> *preds;
170  vec<edge, va_gc> *succs;
171 
172  /* Auxiliary info specific to a pass. */
173  PTR GTY ((skip (""))) aux;
174 
175  /* Innermost loop containing the block. */
176  struct loop *loop_father;
177 
178  /* The dominance and postdominance information node. */
179  struct et_node * GTY ((skip (""))) dom[2];
180 
181  /* Previous and next blocks in the chain. */
182  basic_block prev_bb;
183  basic_block next_bb;
184 
185  union basic_block_il_dependent {
186  struct gimple_bb_info GTY ((tag ("0"))) gimple;
187  struct {
188  rtx head_;
189  struct rtl_bb_info * rtl;
190  } GTY ((tag ("1"))) x;
191  } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
192 
193  /* Various flags. See cfg-flags.def. */
194  int flags;
195 
196  /* The index of this block. */
197  int index;
198 
199  /* Expected number of executions: calculated in profile.c. */
200  gcov_type count;
201 
202  /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
203  int frequency;
205  /* The discriminator for this block. The discriminator distinguishes
206  among several basic blocks that share a common locus, allowing for
207  more accurate sample-based profiling. */
208  int discriminator;
209 };
210 
211 /* This ensures that struct gimple_bb_info is smaller than
212  struct rtl_bb_info, so that inlining the former into basic_block_def
213  is the better choice. */
214 typedef int __assert_gimple_bb_smaller_rtl_bb
215  [(int) sizeof (struct rtl_bb_info)
216  - (int) sizeof (struct gimple_bb_info)];
218 
219 #define BB_FREQ_MAX 10000
221 /* Masks for basic_block.flags. */
222 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
223 enum cfg_bb_flags
224 {
225 #include "cfg-flags.def"
226  LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
227 };
228 #undef DEF_BASIC_BLOCK_FLAG
230 /* Bit mask for all basic block flags. */
231 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
232 
233 /* Bit mask for all basic block flags that must be preserved. These are
234  the bit masks that are *not* cleared by clear_bb_flags. */
235 #define BB_FLAGS_TO_PRESERVE \
236  (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
237  | BB_HOT_PARTITION | BB_COLD_PARTITION)
238 
239 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
240 #define BB_UNPARTITIONED 0
242 /* Partitions, to be used when partitioning hot and cold basic blocks into
243  separate sections. */
244 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
245 #define BB_SET_PARTITION(bb, part) do { \
246  basic_block bb_ = (bb); \
247  bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
248  | (part)); \
249 } while (0)
250 
251 #define BB_COPY_PARTITION(dstbb, srcbb) \
252  BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
253 
254 /* State of dominance information. */
255 
256 enum dom_state
257 {
258  DOM_NONE, /* Not computed at all. */
259  DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
260  DOM_OK /* Everything is ok. */
261 };
262 
263 /* What sort of profiling information we have. */
264 enum profile_status_d
265 {
266  PROFILE_ABSENT,
267  PROFILE_GUESSED,
268  PROFILE_READ,
269  PROFILE_LAST /* Last value, used by profile streaming. */
270 };
271 
272 /* A structure to group all the per-function control flow graph data.
273  The x_* prefixing is necessary because otherwise references to the
274  fields of this struct are interpreted as the defines for backward
275  source compatibility following the definition of this struct. */
276 struct GTY(()) control_flow_graph {
277  /* Block pointers for the exit and entry of a function.
278  These are always the head and tail of the basic block list. */
279  basic_block x_entry_block_ptr;
280  basic_block x_exit_block_ptr;
281 
282  /* Index by basic block number, get basic block struct info. */
283  vec<basic_block, va_gc> *x_basic_block_info;
284 
285  /* Number of basic blocks in this flow graph. */
286  int x_n_basic_blocks;
287 
288  /* Number of edges in this flow graph. */
289  int x_n_edges;
290 
291  /* The first free basic block number. */
292  int x_last_basic_block;
293 
294  /* UIDs for LABEL_DECLs. */
295  int last_label_uid;
296 
297  /* Mapping of labels to their associated blocks. At present
298  only used for the gimple CFG. */
299  vec<basic_block, va_gc> *x_label_to_block_map;
300 
301  enum profile_status_d x_profile_status;
303  /* Whether the dominators and the postdominators are available. */
304  enum dom_state x_dom_computed[2];
306  /* Number of basic blocks in the dominance tree. */
307  unsigned x_n_bbs_in_dom_tree[2];
308 
309  /* Maximal number of entities in the single jumptable. Used to estimate
310  final flowgraph size. */
311  int max_jumptable_ents;
312 };
314 /* Defines for accessing the fields of the CFG structure for function FN. */
315 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
316 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
317 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
318 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
319 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
320 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
321 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
322 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
323 
324 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
325  ((*basic_block_info_for_function (FN))[(N)])
326 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
327  ((*basic_block_info_for_function (FN))[(N)] = (BB))
329 /* Defines for textual backward source compatibility. */
330 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
331 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
332 #define basic_block_info (cfun->cfg->x_basic_block_info)
333 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
334 #define n_edges (cfun->cfg->x_n_edges)
335 #define last_basic_block (cfun->cfg->x_last_basic_block)
336 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
337 #define profile_status (cfun->cfg->x_profile_status)
338 
339 #define BASIC_BLOCK(N) ((*basic_block_info)[(N)])
340 #define SET_BASIC_BLOCK(N,BB) ((*basic_block_info)[(N)] = (BB))
342 /* For iterating over basic blocks. */
343 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
344  for (BB = FROM; BB != TO; BB = BB->DIR)
346 #define FOR_EACH_BB_FN(BB, FN) \
347  FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
348 
349 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
350 
351 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
352  FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
353 
354 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN (BB, cfun)
355 
356 /* For iterating over insns in basic block. */
357 #define FOR_BB_INSNS(BB, INSN) \
358  for ((INSN) = BB_HEAD (BB); \
359  (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
360  (INSN) = NEXT_INSN (INSN))
361 
362 /* For iterating over insns in basic block when we might remove the
363  current insn. */
364 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
365  for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
366  (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
367  (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
368 
369 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
370  for ((INSN) = BB_END (BB); \
371  (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
372  (INSN) = PREV_INSN (INSN))
373 
374 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
375  for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
376  (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
377  (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
378 
379 /* Cycles through _all_ basic blocks, even the fake ones (entry and
380  exit block). */
381 
382 #define FOR_ALL_BB(BB) \
383  for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
384 
385 #define FOR_ALL_BB_FN(BB, FN) \
386  for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
387 
388 
389 /* Stuff for recording basic block info. */
390 
391 #define BB_HEAD(B) (B)->il.x.head_
392 #define BB_END(B) (B)->il.x.rtl->end_
393 #define BB_HEADER(B) (B)->il.x.rtl->header_
394 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
395 
396 /* Special block numbers [markers] for entry and exit.
397  Neither of them is supposed to hold actual statements. */
398 #define ENTRY_BLOCK (0)
399 #define EXIT_BLOCK (1)
400 
401 /* The two blocks that are always in the cfg. */
402 #define NUM_FIXED_BLOCKS (2)
403 
404 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
405 
406 extern void compute_bb_for_insn (void);
407 extern unsigned int free_bb_for_insn (void);
408 extern void update_bb_for_insn (basic_block);
409 
410 extern void insert_insn_on_edge (rtx, edge);
411 basic_block split_edge_and_insert (edge, rtx);
412 
413 extern void commit_one_edge_insertion (edge e);
414 extern void commit_edge_insertions (void);
415 
416 extern edge unchecked_make_edge (basic_block, basic_block, int);
417 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
418 extern edge make_edge (basic_block, basic_block, int);
419 extern edge make_single_succ_edge (basic_block, basic_block, int);
420 extern void remove_edge_raw (edge);
421 extern void redirect_edge_succ (edge, basic_block);
422 extern edge redirect_edge_succ_nodup (edge, basic_block);
423 extern void redirect_edge_pred (edge, basic_block);
424 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
425 extern void clear_bb_flags (void);
426 extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
427 extern void dump_edge_info (FILE *, edge, int, int);
428 extern void debug (edge_def &ref);
429 extern void debug (edge_def *ptr);
430 extern void brief_dump_cfg (FILE *, int);
431 extern void clear_edges (void);
432 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
433 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
434  gcov_type);
435 
436 /* Structure to group all of the information to process IF-THEN and
437  IF-THEN-ELSE blocks for the conditional execution support. This
438  needs to be in a public file in case the IFCVT macros call
439  functions passing the ce_if_block data structure. */
440 
441 typedef struct ce_if_block
442 {
443  basic_block test_bb; /* First test block. */
444  basic_block then_bb; /* THEN block. */
445  basic_block else_bb; /* ELSE block or NULL. */
446  basic_block join_bb; /* Join THEN/ELSE blocks. */
447  basic_block last_test_bb; /* Last bb to hold && or || tests. */
448  int num_multiple_test_blocks; /* # of && and || basic blocks. */
449  int num_and_and_blocks; /* # of && blocks. */
450  int num_or_or_blocks; /* # of || blocks. */
451  int num_multiple_test_insns; /* # of insns in && and || blocks. */
452  int and_and_p; /* Complex test is &&. */
453  int num_then_insns; /* # of insns in THEN block. */
454  int num_else_insns; /* # of insns in ELSE block. */
455  int pass; /* Pass number. */
456 } ce_if_block_t;
457 
458 /* This structure maintains an edge list vector. */
459 /* FIXME: Make this a vec<edge>. */
460 struct edge_list
461 {
462  int num_edges;
463  edge *index_to_edge;
464 };
465 
466 /* Class to compute and manage control dependences on an edge-list. */
467 class control_dependences
468 {
469 public:
470  control_dependences (edge_list *);
471  ~control_dependences ();
472  bitmap get_edges_dependent_on (int);
473  edge get_edge (int);
474 
475 private:
476  void set_control_dependence_map_bit (basic_block, int);
477  void clear_control_dependence_bitmap (basic_block);
478  void find_control_dependence (int);
479  vec<bitmap> control_dependence_map;
480  edge_list *m_el;
481 };
482 
483 /* The base value for branch probability notes and edge probabilities. */
484 #define REG_BR_PROB_BASE 10000
485 
486 /* This is the value which indicates no edge is present. */
487 #define EDGE_INDEX_NO_EDGE -1
488 
489 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
490  if there is no edge between the 2 basic blocks. */
491 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
492 
493 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
494  block which is either the pred or succ end of the indexed edge. */
495 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
496 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
497 
498 /* INDEX_EDGE returns a pointer to the edge. */
499 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
500 
501 /* Number of edges in the compressed edge list. */
502 #define NUM_EDGES(el) ((el)->num_edges)
503 
504 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
505 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
506  ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
507 
508 /* BB is assumed to contain conditional jump. Return the branch edge. */
509 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
510  ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
512 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
513 /* Return expected execution frequency of the edge E. */
514 #define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
515  REG_BR_PROB_BASE)
517 /* Compute a scale factor (or probability) suitable for scaling of
518  gcov_type values via apply_probability() and apply_scale(). */
519 #define GCOV_COMPUTE_SCALE(num,den) \
520  ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
522 /* Return nonzero if edge is critical. */
523 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
524  && EDGE_COUNT ((e)->dest->preds) >= 2)
525 
526 #define EDGE_COUNT(ev) vec_safe_length (ev)
527 #define EDGE_I(ev,i) (*ev)[(i)]
528 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
529 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
531 /* Returns true if BB has precisely one successor. */
533 static inline bool
534 single_succ_p (const_basic_block bb)
535 {
536  return EDGE_COUNT (bb->succs) == 1;
537 }
539 /* Returns true if BB has precisely one predecessor. */
540 
541 static inline bool
542 single_pred_p (const_basic_block bb)
543 {
544  return EDGE_COUNT (bb->preds) == 1;
545 }
546 
547 /* Returns the single successor edge of basic block BB. Aborts if
548  BB does not have exactly one successor. */
549 
550 static inline edge
551 single_succ_edge (const_basic_block bb)
552 {
553  gcc_checking_assert (single_succ_p (bb));
554  return EDGE_SUCC (bb, 0);
555 }
556 
557 /* Returns the single predecessor edge of basic block BB. Aborts
558  if BB does not have exactly one predecessor. */
559 
560 static inline edge
561 single_pred_edge (const_basic_block bb)
562 {
563  gcc_checking_assert (single_pred_p (bb));
564  return EDGE_PRED (bb, 0);
565 }
566 
567 /* Returns the single successor block of basic block BB. Aborts
568  if BB does not have exactly one successor. */
569 
570 static inline basic_block
571 single_succ (const_basic_block bb)
572 {
573  return single_succ_edge (bb)->dest;
574 }
575 
576 /* Returns the single predecessor block of basic block BB. Aborts
577  if BB does not have exactly one predecessor.*/
578 
579 static inline basic_block
580 single_pred (const_basic_block bb)
581 {
582  return single_pred_edge (bb)->src;
583 }
584 
585 /* Iterator object for edges. */
586 
587 typedef struct {
588  unsigned index;
589  vec<edge, va_gc> **container;
590 } edge_iterator;
591 
592 static inline vec<edge, va_gc> *
593 ei_container (edge_iterator i)
594 {
595  gcc_checking_assert (i.container);
596  return *i.container;
597 }
598 
599 #define ei_start(iter) ei_start_1 (&(iter))
600 #define ei_last(iter) ei_last_1 (&(iter))
601 
602 /* Return an iterator pointing to the start of an edge vector. */
603 static inline edge_iterator
604 ei_start_1 (vec<edge, va_gc> **ev)
605 {
606  edge_iterator i;
607 
608  i.index = 0;
609  i.container = ev;
610 
611  return i;
612 }
613 
614 /* Return an iterator pointing to the last element of an edge
615  vector. */
616 static inline edge_iterator
617 ei_last_1 (vec<edge, va_gc> **ev)
618 {
619  edge_iterator i;
620 
621  i.index = EDGE_COUNT (*ev) - 1;
622  i.container = ev;
623 
624  return i;
625 }
627 /* Is the iterator `i' at the end of the sequence? */
628 static inline bool
629 ei_end_p (edge_iterator i)
630 {
631  return (i.index == EDGE_COUNT (ei_container (i)));
632 }
633 
634 /* Is the iterator `i' at one position before the end of the
635  sequence? */
636 static inline bool
637 ei_one_before_end_p (edge_iterator i)
638 {
639  return (i.index + 1 == EDGE_COUNT (ei_container (i)));
640 }
641 
642 /* Advance the iterator to the next element. */
643 static inline void
644 ei_next (edge_iterator *i)
645 {
646  gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
647  i->index++;
648 }
649 
650 /* Move the iterator to the previous element. */
651 static inline void
652 ei_prev (edge_iterator *i)
653 {
654  gcc_checking_assert (i->index > 0);
655  i->index--;
656 }
657 
658 /* Return the edge pointed to by the iterator `i'. */
659 static inline edge
660 ei_edge (edge_iterator i)
661 {
662  return EDGE_I (ei_container (i), i.index);
663 }
664 
665 /* Return an edge pointed to by the iterator. Do it safely so that
666  NULL is returned when the iterator is pointing at the end of the
667  sequence. */
668 static inline edge
669 ei_safe_edge (edge_iterator i)
670 {
671  return !ei_end_p (i) ? ei_edge (i) : NULL;
672 }
673 
674 /* Return 1 if we should continue to iterate. Return 0 otherwise.
675  *Edge P is set to the next edge if we are to continue to iterate
676  and NULL otherwise. */
678 static inline bool
679 ei_cond (edge_iterator ei, edge *p)
680 {
681  if (!ei_end_p (ei))
682  {
683  *p = ei_edge (ei);
684  return 1;
685  }
686  else
687  {
688  *p = NULL;
689  return 0;
690  }
691 }
692 
693 /* This macro serves as a convenient way to iterate each edge in a
694  vector of predecessor or successor edges. It must not be used when
695  an element might be removed during the traversal, otherwise
696  elements will be missed. Instead, use a for-loop like that shown
697  in the following pseudo-code:
698 
699  FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
700  {
701  IF (e != taken_edge)
702  remove_edge (e);
703  ELSE
704  ei_next (&ei);
705  }
706 */
707 
708 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
709  for ((ITER) = ei_start ((EDGE_VEC)); \
710  ei_cond ((ITER), &(EDGE)); \
711  ei_next (&(ITER)))
712 
713 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
714  except for edge forwarding */
715 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
716 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
717  to care REG_DEAD notes. */
718 #define CLEANUP_THREADING 8 /* Do jump threading. */
719 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
720  insns. */
721 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
722 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
723 
724 /* In cfganal.c */
725 extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
726 extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
727 extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
728 extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
729 
730 /* In lcm.c */
731 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
732  sbitmap *, sbitmap *, sbitmap **,
733  sbitmap **);
734 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
735  sbitmap *, sbitmap *,
736  sbitmap *, sbitmap **,
737  sbitmap **);
738 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
739 
740 /* In predict.c */
741 extern bool maybe_hot_bb_p (struct function *, const_basic_block);
742 extern bool maybe_hot_edge_p (edge);
743 extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
744 extern bool probably_never_executed_edge_p (struct function *, edge);
745 extern bool optimize_bb_for_size_p (const_basic_block);
746 extern bool optimize_bb_for_speed_p (const_basic_block);
747 extern bool optimize_edge_for_size_p (edge);
748 extern bool optimize_edge_for_speed_p (edge);
749 extern bool optimize_loop_for_size_p (struct loop *);
750 extern bool optimize_loop_for_speed_p (struct loop *);
751 extern bool optimize_loop_nest_for_size_p (struct loop *);
752 extern bool optimize_loop_nest_for_speed_p (struct loop *);
753 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
754 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
755 extern void gimple_predict_edge (edge, enum br_predictor, int);
756 extern void rtl_predict_edge (edge, enum br_predictor, int);
757 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
758 extern void guess_outgoing_edge_probabilities (basic_block);
759 extern void remove_predictions_associated_with_edge (edge);
760 extern bool edge_probability_reliable_p (const_edge);
761 extern bool br_prob_note_reliable_p (const_rtx);
762 extern bool predictable_edge_p (edge);
763 
764 /* In cfg.c */
765 extern void init_flow (struct function *);
766 extern void debug_bb (basic_block);
767 extern basic_block debug_bb_n (int);
768 extern void dump_flow_info (FILE *, int);
769 extern void expunge_block (basic_block);
770 extern void link_block (basic_block, basic_block);
771 extern void unlink_block (basic_block);
772 extern void compact_blocks (void);
773 extern basic_block alloc_block (void);
774 extern void alloc_aux_for_blocks (int);
775 extern void clear_aux_for_blocks (void);
776 extern void free_aux_for_blocks (void);
777 extern void alloc_aux_for_edge (edge, int);
778 extern void alloc_aux_for_edges (int);
779 extern void clear_aux_for_edges (void);
780 extern void free_aux_for_edges (void);
781 
782 /* In cfganal.c */
783 extern void find_unreachable_blocks (void);
784 extern bool mark_dfs_back_edges (void);
785 struct edge_list * create_edge_list (void);
786 void free_edge_list (struct edge_list *);
787 void print_edge_list (FILE *, struct edge_list *);
788 void verify_edge_list (FILE *, struct edge_list *);
789 int find_edge_index (struct edge_list *, basic_block, basic_block);
790 edge find_edge (basic_block, basic_block);
791 extern void remove_fake_edges (void);
792 extern void remove_fake_exit_edges (void);
793 extern void add_noreturn_fake_exit_edges (void);
794 extern void connect_infinite_loops_to_exit (void);
795 extern int post_order_compute (int *, bool, bool);
796 extern basic_block dfs_find_deadend (basic_block);
797 extern int inverted_post_order_compute (int *);
798 extern int pre_and_rev_post_order_compute_fn (struct function *,
799  int *, int *, bool);
800 extern int pre_and_rev_post_order_compute (int *, int *, bool);
801 extern int dfs_enumerate_from (basic_block, int,
802  bool (*)(const_basic_block, const void *),
803  basic_block *, int, const void *);
804 extern void compute_dominance_frontiers (struct bitmap_head_def *);
805 extern bitmap compute_idf (bitmap, struct bitmap_head_def *);
806 extern basic_block * single_pred_before_succ_order (void);
807 
808 /* In cfgrtl.c */
809 extern rtx block_label (basic_block);
810 extern rtx bb_note (basic_block);
811 extern bool purge_all_dead_edges (void);
812 extern bool purge_dead_edges (basic_block);
813 extern bool fixup_abnormal_edges (void);
814 extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
815 extern bool contains_no_active_insn_p (const_basic_block);
816 extern bool forwarder_block_p (const_basic_block);
817 extern bool can_fallthru (basic_block, basic_block);
818 extern void emit_barrier_after_bb (basic_block bb);
819 extern void fixup_partitions (void);
820 
821 /* In cfgbuild.c. */
822 extern void find_many_sub_basic_blocks (sbitmap);
823 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
824 
825 enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
826 
827 /* In cfgcleanup.c. */
828 extern bool cleanup_cfg (int);
829 extern int flow_find_cross_jump (basic_block, basic_block, rtx *, rtx *,
830  enum replace_direction*);
831 extern int flow_find_head_matching_sequence (basic_block, basic_block,
832  rtx *, rtx *, int);
833 
834 extern bool delete_unreachable_blocks (void);
835 
836 extern void update_br_prob_note (basic_block);
837 extern bool inside_basic_block_p (const_rtx);
838 extern bool control_flow_insn_p (const_rtx);
839 extern rtx get_last_bb_insn (basic_block);
840 
841 /* In dominance.c */
842 
843 enum cdi_direction
844 {
845  CDI_DOMINATORS = 1,
846  CDI_POST_DOMINATORS = 2
847 };
848 
849 extern enum dom_state dom_info_state (enum cdi_direction);
850 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
851 extern bool dom_info_available_p (enum cdi_direction);
852 extern void calculate_dominance_info (enum cdi_direction);
853 extern void free_dominance_info (enum cdi_direction);
854 extern basic_block nearest_common_dominator (enum cdi_direction,
855  basic_block, basic_block);
856 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
857  bitmap);
858 extern void set_immediate_dominator (enum cdi_direction, basic_block,
859  basic_block);
860 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
861 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
862 extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
863 extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
864  basic_block *,
865  unsigned);
866 extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
867  basic_block, int);
868 extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
869  basic_block);
870 extern void add_to_dominance_info (enum cdi_direction, basic_block);
871 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
872 basic_block recompute_dominator (enum cdi_direction, basic_block);
873 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
874  basic_block);
875 extern void iterate_fix_dominators (enum cdi_direction,
876  vec<basic_block> , bool);
877 extern void verify_dominators (enum cdi_direction);
878 extern basic_block first_dom_son (enum cdi_direction, basic_block);
879 extern basic_block next_dom_son (enum cdi_direction, basic_block);
880 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
881 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
882 
883 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
884 extern void break_superblocks (void);
885 extern void relink_block_chain (bool);
886 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
887 extern void init_rtl_bb_info (basic_block);
888 
889 extern void initialize_original_copy_tables (void);
890 extern void free_original_copy_tables (void);
891 extern void set_bb_original (basic_block, basic_block);
892 extern basic_block get_bb_original (basic_block);
893 extern void set_bb_copy (basic_block, basic_block);
894 extern basic_block get_bb_copy (basic_block);
895 void set_loop_copy (struct loop *, struct loop *);
896 struct loop *get_loop_copy (struct loop *);
897 
898 #include "cfghooks.h"
899 
900 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
901 static inline bool
902 bb_has_eh_pred (basic_block bb)
903 {
904  edge e;
905  edge_iterator ei;
906 
907  FOR_EACH_EDGE (e, ei, bb->preds)
908  {
909  if (e->flags & EDGE_EH)
910  return true;
911  }
912  return false;
913 }
914 
915 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
916 static inline bool
917 bb_has_abnormal_pred (basic_block bb)
918 {
919  edge e;
920  edge_iterator ei;
921 
922  FOR_EACH_EDGE (e, ei, bb->preds)
923  {
924  if (e->flags & EDGE_ABNORMAL)
925  return true;
926  }
927  return false;
928 }
929 
930 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
931 static inline edge
932 find_fallthru_edge (vec<edge, va_gc> *edges)
933 {
934  edge e;
935  edge_iterator ei;
936 
937  FOR_EACH_EDGE (e, ei, edges)
938  if (e->flags & EDGE_FALLTHRU)
939  break;
940 
941  return e;
942 }
943 
944 /* In cfgloopmanip.c. */
945 extern edge mfb_kj_edge;
946 extern bool mfb_keep_just (edge);
947 
948 /* In cfgexpand.c. */
949 extern void rtl_profile_for_bb (basic_block);
950 extern void rtl_profile_for_edge (edge);
951 extern void default_rtl_profile (void);
952 
953 /* In profile.c. */
954 typedef struct gcov_working_set_info gcov_working_set_t;
955 extern gcov_working_set_t *find_working_set (unsigned pct_times_10);
956 
957 /* Check tha probability is sane. */
958 
959 static inline void
960 check_probability (int prob)
961 {
962  gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
963 }
964 
965 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
966  Used to combine BB probabilities. */
967 
968 static inline int
969 combine_probabilities (int prob1, int prob2)
970 {
971  check_probability (prob1);
972  check_probability (prob2);
973  return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
974 }
975 
976 /* Apply scale factor SCALE on frequency or count FREQ. Use this
977  interface when potentially scaling up, so that SCALE is not
978  constrained to be < REG_BR_PROB_BASE. */
979 
980 static inline gcov_type
981 apply_scale (gcov_type freq, gcov_type scale)
982 {
983  return RDIV (freq * scale, REG_BR_PROB_BASE);
984 }
985 
986 /* Apply probability PROB on frequency or count FREQ. */
987 
988 static inline gcov_type
989 apply_probability (gcov_type freq, int prob)
990 {
991  check_probability (prob);
992  return apply_scale (freq, prob);
993 }
994 
995 /* Return inverse probability for PROB. */
996 
997 static inline int
998 inverse_probability (int prob1)
999 {
1000  check_probability (prob1);
1001  return REG_BR_PROB_BASE - prob1;
1002 }
1003 #endif /* GCC_BASIC_BLOCK_H */