GCC Middle and Back End API Reference
Main Page
Namespaces
Data Structures
Files
File List
Globals
basic-block.h
Go to the documentation of this file.
1
/* Define control flow data structures for the CFG.
2
Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4
This file is part of GCC.
5
6
GCC is free software; you can redistribute it and/or modify it under
7
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
10
11
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12
WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
for more details.
15
16
You should have received a copy of the GNU General Public License
17
along with GCC; see the file COPYING3. If not see
18
<http://www.gnu.org/licenses/>. */
19
20
#ifndef GCC_BASIC_BLOCK_H
21
#define GCC_BASIC_BLOCK_H
22
23
#include "
predict.h
"
24
#include "
vec.h
"
25
#include "
function.h
"
26
27
/* Use gcov_type to hold basic block counters. Should be at least
28
64bit. Although a counter cannot be negative, we use a signed
29
type, because erroneous negative counts can be generated when the
30
flow graph is manipulated by various optimizations. A signed type
31
makes those easy to detect. */
32
33
/* Control flow edge information. */
34
struct
GTY((user))
edge_def
{
35
/* The two blocks at the ends of the edge. */
36
basic_block
src;
37
basic_block
dest;
38
39
/* Instructions queued on the edge. */
40
union
edge_def_insns
{
41
gimple_seq
g
;
42
rtx
r;
43
} insns;
44
45
/* Auxiliary info specific to a pass. */
46
PTR aux;
47
48
/* Location of any goto implicit in the edge. */
49
location_t
goto_locus;
50
51
/* The index number corresponding to this edge in the edge vector
52
dest->preds. */
53
unsigned
int
dest_idx;
54
55
int
flags;
/* see cfg-flags.def */
56
int
probability;
/* biased by REG_BR_PROB_BASE */
57
gcov_type
count
;
/* Expected number of executions calculated
58
in profile.c */
59
};
60
61
62
/* Garbage collection and PCH support for edge_def. */
63
extern
void
gt_ggc_mx
(
edge_def
*e);
64
extern
void
gt_pch_nx
(
edge_def
*e);
65
extern
void
gt_pch_nx
(
edge_def
*e,
gt_pointer_operator
,
void
*);
66
67
/* Masks for edge.flags. */
68
#define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
69
enum
cfg_edge_flags
{
70
#include "cfg-flags.def"
71
LAST_CFG_EDGE_FLAG
/* this is only used for EDGE_ALL_FLAGS */
72
};
73
#undef DEF_EDGE_FLAG
74
75
/* Bit mask for all edge flags. */
76
#define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
77
78
/* The following four flags all indicate something special about an edge.
79
Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
80
control flow transfers. */
81
#define EDGE_COMPLEX \
82
(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
83
84
/* Counter summary from the last set of coverage counts read by
85
profile.c. */
86
extern
const
struct
gcov_ctr_summary
*
profile_info
;
87
88
/* Structure to gather statistic about profile consistency, per pass.
89
An array of this structure, indexed by pass static number, is allocated
90
in passes.c. The structure is defined here so that different CFG modes
91
can do their book-keeping via CFG hooks.
92
93
For every field[2], field[0] is the count before the pass runs, and
94
field[1] is the post-pass count. This allows us to monitor the effect
95
of each individual pass on the profile consistency.
96
97
This structure is not supposed to be used by anything other than passes.c
98
and one CFG hook per CFG mode. */
99
struct
profile_record
100
{
101
/* The number of basic blocks where sum(freq) of the block's predecessors
102
doesn't match reasonably well with the incoming frequency. */
103
int
num_mismatched_freq_in
[2];
104
/* Likewise for a basic block's successors. */
105
int
num_mismatched_freq_out
[2];
106
/* The number of basic blocks where sum(count) of the block's predecessors
107
doesn't match reasonably well with the incoming frequency. */
108
int
num_mismatched_count_in
[2];
109
/* Likewise for a basic block's successors. */
110
int
num_mismatched_count_out
[2];
111
/* A weighted cost of the run-time of the function body. */
112
gcov_type
time
[2];
113
/* A weighted cost of the size of the function body. */
114
int
size
[2];
115
/* True iff this pass actually was run. */
116
bool
run
;
117
};
118
119
/* Declared in cfgloop.h. */
120
struct
loop
;
121
122
struct
GTY(())
rtl_bb_info
{
123
/* The first insn of the block is embedded into bb->il.x. */
124
/* The last insn of the block. */
125
rtx
end_;
126
127
/* In CFGlayout mode points to insn notes/jumptables to be placed just before
128
and after the block. */
129
rtx
header_;
130
rtx
footer_;
131
};
132
133
struct
GTY(())
gimple_bb_info
{
134
/* Sequence of statements in this block. */
135
gimple_seq
seq;
136
137
/* PHI nodes for this block. */
138
gimple_seq
phi_nodes
;
139
};
140
141
/* A basic block is a sequence of instructions with only one entry and
142
only one exit. If any one of the instructions are executed, they
143
will all be executed, and in sequence from first to last.
144
145
There may be COND_EXEC instructions in the basic block. The
146
COND_EXEC *instructions* will be executed -- but if the condition
147
is false the conditionally executed *expressions* will of course
148
not be executed. We don't consider the conditionally executed
149
expression (which might have side-effects) to be in a separate
150
basic block because the program counter will always be at the same
151
location after the COND_EXEC instruction, regardless of whether the
152
condition is true or not.
153
154
Basic blocks need not start with a label nor end with a jump insn.
155
For example, a previous basic block may just "conditionally fall"
156
into the succeeding basic block, and the last basic block need not
157
end with a jump insn. Block 0 is a descendant of the entry block.
158
159
A basic block beginning with two labels cannot have notes between
160
the labels.
161
162
Data for jump tables are stored in jump_insns that occur in no
163
basic block even though these insns can follow or precede insns in
164
basic blocks. */
165
166
/* Basic block information indexed by block number. */
167
struct
GTY((chain_next ("%h.next_bb
"), chain_prev ("
%h.prev_bb
"))) basic_block_def {
168
/* The edges into and out of the block. */
169
vec<edge, va_gc> *preds;
170
vec<edge, va_gc> *succs;
171
172
/* Auxiliary info specific to a pass. */
173
PTR GTY ((skip ("
"))) aux;
174
175
/* Innermost loop containing the block. */
176
struct loop *loop_father;
177
178
/* The dominance and postdominance information node. */
179
struct et_node * GTY ((skip ("
"))) dom[2];
180
181
/* Previous and next blocks in the chain. */
182
basic_block prev_bb;
183
basic_block next_bb;
184
185
union basic_block_il_dependent {
186
struct gimple_bb_info GTY ((tag ("
0
"))) gimple;
187
struct {
188
rtx head_;
189
struct rtl_bb_info * rtl;
190
} GTY ((tag ("
1
"))) x;
191
} GTY ((desc ("
((%1.flags & BB_RTL) != 0)
"))) il;
192
193
/* Various flags. See cfg-flags.def. */
194
int flags;
195
196
/* The index of this block. */
197
int index;
198
199
/* Expected number of executions: calculated in profile.c. */
200
gcov_type count;
201
202
/* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
203
int frequency;
204
205
/* The discriminator for this block. The discriminator distinguishes
206
among several basic blocks that share a common locus, allowing for
207
more accurate sample-based profiling. */
208
int discriminator;
209
};
210
211
/* This ensures that struct gimple_bb_info is smaller than
212
struct rtl_bb_info, so that inlining the former into basic_block_def
213
is the better choice. */
214
typedef int __assert_gimple_bb_smaller_rtl_bb
215
[(int) sizeof (struct rtl_bb_info)
216
- (int) sizeof (struct gimple_bb_info)];
217
218
219
#define BB_FREQ_MAX 10000
220
221
/* Masks for basic_block.flags. */
222
#define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
223
enum cfg_bb_flags
224
{
225
#include "
cfg-flags.def
"
226
LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
227
};
228
#undef DEF_BASIC_BLOCK_FLAG
229
230
/* Bit mask for all basic block flags. */
231
#define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
232
233
/* Bit mask for all basic block flags that must be preserved. These are
234
the bit masks that are *not* cleared by clear_bb_flags. */
235
#define BB_FLAGS_TO_PRESERVE \
236
(BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
237
| BB_HOT_PARTITION | BB_COLD_PARTITION)
238
239
/* Dummy bitmask for convenience in the hot/cold partitioning code. */
240
#define BB_UNPARTITIONED 0
241
242
/* Partitions, to be used when partitioning hot and cold basic blocks into
243
separate sections. */
244
#define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
245
#define BB_SET_PARTITION(bb, part) do { \
246
basic_block bb_ = (bb); \
247
bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
248
| (part)); \
249
} while (0)
250
251
#define BB_COPY_PARTITION(dstbb, srcbb) \
252
BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
253
254
/* State of dominance information. */
255
256
enum dom_state
257
{
258
DOM_NONE, /* Not computed at all. */
259
DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
260
DOM_OK /* Everything is ok. */
261
};
262
263
/* What sort of profiling information we have. */
264
enum profile_status_d
265
{
266
PROFILE_ABSENT,
267
PROFILE_GUESSED,
268
PROFILE_READ,
269
PROFILE_LAST /* Last value, used by profile streaming. */
270
};
271
272
/* A structure to group all the per-function control flow graph data.
273
The x_* prefixing is necessary because otherwise references to the
274
fields of this struct are interpreted as the defines for backward
275
source compatibility following the definition of this struct. */
276
struct GTY(()) control_flow_graph {
277
/* Block pointers for the exit and entry of a function.
278
These are always the head and tail of the basic block list. */
279
basic_block x_entry_block_ptr;
280
basic_block x_exit_block_ptr;
281
282
/* Index by basic block number, get basic block struct info. */
283
vec<basic_block, va_gc> *x_basic_block_info;
284
285
/* Number of basic blocks in this flow graph. */
286
int x_n_basic_blocks;
287
288
/* Number of edges in this flow graph. */
289
int x_n_edges;
290
291
/* The first free basic block number. */
292
int x_last_basic_block;
293
294
/* UIDs for LABEL_DECLs. */
295
int last_label_uid;
296
297
/* Mapping of labels to their associated blocks. At present
298
only used for the gimple CFG. */
299
vec<basic_block, va_gc> *x_label_to_block_map;
300
301
enum profile_status_d x_profile_status;
302
303
/* Whether the dominators and the postdominators are available. */
304
enum dom_state x_dom_computed[2];
305
306
/* Number of basic blocks in the dominance tree. */
307
unsigned x_n_bbs_in_dom_tree[2];
308
309
/* Maximal number of entities in the single jumptable. Used to estimate
310
final flowgraph size. */
311
int max_jumptable_ents;
312
};
313
314
/* Defines for accessing the fields of the CFG structure for function FN. */
315
#define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
316
#define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
317
#define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
318
#define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
319
#define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
320
#define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
321
#define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
322
#define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
323
324
#define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
325
((*basic_block_info_for_function (FN))[(N)])
326
#define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
327
((*basic_block_info_for_function (FN))[(N)] = (BB))
328
329
/* Defines for textual backward source compatibility. */
330
#define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
331
#define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
332
#define basic_block_info (cfun->cfg->x_basic_block_info)
333
#define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
334
#define n_edges (cfun->cfg->x_n_edges)
335
#define last_basic_block (cfun->cfg->x_last_basic_block)
336
#define label_to_block_map (cfun->cfg->x_label_to_block_map)
337
#define profile_status (cfun->cfg->x_profile_status)
338
339
#define BASIC_BLOCK(N) ((*basic_block_info)[(N)])
340
#define SET_BASIC_BLOCK(N,BB) ((*basic_block_info)[(N)] = (BB))
341
342
/* For iterating over basic blocks. */
343
#define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
344
for (BB = FROM; BB != TO; BB = BB->DIR)
345
346
#define FOR_EACH_BB_FN(BB, FN) \
347
FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
348
349
#define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
350
351
#define FOR_EACH_BB_REVERSE_FN(BB, FN) \
352
FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
353
354
#define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN (BB, cfun)
355
356
/* For iterating over insns in basic block. */
357
#define FOR_BB_INSNS(BB, INSN) \
358
for ((INSN) = BB_HEAD (BB); \
359
(INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
360
(INSN) = NEXT_INSN (INSN))
361
362
/* For iterating over insns in basic block when we might remove the
363
current insn. */
364
#define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
365
for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
366
(INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
367
(INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
368
369
#define FOR_BB_INSNS_REVERSE(BB, INSN) \
370
for ((INSN) = BB_END (BB); \
371
(INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
372
(INSN) = PREV_INSN (INSN))
373
374
#define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
375
for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
376
(INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
377
(INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
378
379
/* Cycles through _all_ basic blocks, even the fake ones (entry and
380
exit block). */
381
382
#define FOR_ALL_BB(BB) \
383
for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
384
385
#define FOR_ALL_BB_FN(BB, FN) \
386
for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
387
388
389
/* Stuff for recording basic block info. */
390
391
#define BB_HEAD(B) (B)->il.x.head_
392
#define BB_END(B) (B)->il.x.rtl->end_
393
#define BB_HEADER(B) (B)->il.x.rtl->header_
394
#define BB_FOOTER(B) (B)->il.x.rtl->footer_
395
396
/* Special block numbers [markers] for entry and exit.
397
Neither of them is supposed to hold actual statements. */
398
#define ENTRY_BLOCK (0)
399
#define EXIT_BLOCK (1)
400
401
/* The two blocks that are always in the cfg. */
402
#define NUM_FIXED_BLOCKS (2)
403
404
#define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
405
406
extern void compute_bb_for_insn (void);
407
extern unsigned int free_bb_for_insn (void);
408
extern void update_bb_for_insn (basic_block);
409
410
extern void insert_insn_on_edge (rtx, edge);
411
basic_block split_edge_and_insert (edge, rtx);
412
413
extern void commit_one_edge_insertion (edge e);
414
extern void commit_edge_insertions (void);
415
416
extern edge unchecked_make_edge (basic_block, basic_block, int);
417
extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
418
extern edge make_edge (basic_block, basic_block, int);
419
extern edge make_single_succ_edge (basic_block, basic_block, int);
420
extern void remove_edge_raw (edge);
421
extern void redirect_edge_succ (edge, basic_block);
422
extern edge redirect_edge_succ_nodup (edge, basic_block);
423
extern void redirect_edge_pred (edge, basic_block);
424
extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
425
extern void clear_bb_flags (void);
426
extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
427
extern void dump_edge_info (FILE *, edge, int, int);
428
extern void debug (edge_def &ref);
429
extern void debug (edge_def *ptr);
430
extern void brief_dump_cfg (FILE *, int);
431
extern void clear_edges (void);
432
extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
433
extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
434
gcov_type);
435
436
/* Structure to group all of the information to process IF-THEN and
437
IF-THEN-ELSE blocks for the conditional execution support. This
438
needs to be in a public file in case the IFCVT macros call
439
functions passing the ce_if_block data structure. */
440
441
typedef struct ce_if_block
442
{
443
basic_block test_bb; /* First test block. */
444
basic_block then_bb; /* THEN block. */
445
basic_block else_bb; /* ELSE block or NULL. */
446
basic_block join_bb; /* Join THEN/ELSE blocks. */
447
basic_block last_test_bb; /* Last bb to hold && or || tests. */
448
int num_multiple_test_blocks; /* # of && and || basic blocks. */
449
int num_and_and_blocks; /* # of && blocks. */
450
int num_or_or_blocks; /* # of || blocks. */
451
int num_multiple_test_insns; /* # of insns in && and || blocks. */
452
int and_and_p; /* Complex test is &&. */
453
int num_then_insns; /* # of insns in THEN block. */
454
int num_else_insns; /* # of insns in ELSE block. */
455
int pass; /* Pass number. */
456
} ce_if_block_t;
457
458
/* This structure maintains an edge list vector. */
459
/* FIXME: Make this a vec<edge>. */
460
struct edge_list
461
{
462
int num_edges;
463
edge *index_to_edge;
464
};
465
466
/* Class to compute and manage control dependences on an edge-list. */
467
class control_dependences
468
{
469
public:
470
control_dependences (edge_list *);
471
~control_dependences ();
472
bitmap get_edges_dependent_on (int);
473
edge get_edge (int);
474
475
private:
476
void set_control_dependence_map_bit (basic_block, int);
477
void clear_control_dependence_bitmap (basic_block);
478
void find_control_dependence (int);
479
vec<bitmap> control_dependence_map;
480
edge_list *m_el;
481
};
482
483
/* The base value for branch probability notes and edge probabilities. */
484
#define REG_BR_PROB_BASE 10000
485
486
/* This is the value which indicates no edge is present. */
487
#define EDGE_INDEX_NO_EDGE -1
488
489
/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
490
if there is no edge between the 2 basic blocks. */
491
#define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
492
493
/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
494
block which is either the pred or succ end of the indexed edge. */
495
#define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
496
#define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
497
498
/* INDEX_EDGE returns a pointer to the edge. */
499
#define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
500
501
/* Number of edges in the compressed edge list. */
502
#define NUM_EDGES(el) ((el)->num_edges)
503
504
/* BB is assumed to contain conditional jump. Return the fallthru edge. */
505
#define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
506
? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
507
508
/* BB is assumed to contain conditional jump. Return the branch edge. */
509
#define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
510
? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
511
512
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
513
/* Return expected execution frequency of the edge E. */
514
#define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
515
REG_BR_PROB_BASE)
516
517
/* Compute a scale factor (or probability) suitable for scaling of
518
gcov_type values via apply_probability() and apply_scale(). */
519
#define GCOV_COMPUTE_SCALE(num,den) \
520
((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
521
522
/* Return nonzero if edge is critical. */
523
#define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
524
&& EDGE_COUNT ((e)->dest->preds) >= 2)
525
526
#define EDGE_COUNT(ev) vec_safe_length (ev)
527
#define EDGE_I(ev,i) (*ev)[(i)]
528
#define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
529
#define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
530
531
/* Returns true if BB has precisely one successor. */
532
533
static inline bool
534
single_succ_p (const_basic_block bb)
535
{
536
return EDGE_COUNT (bb->succs) == 1;
537
}
538
539
/* Returns true if BB has precisely one predecessor. */
540
541
static inline bool
542
single_pred_p (const_basic_block bb)
543
{
544
return EDGE_COUNT (bb->preds) == 1;
545
}
546
547
/* Returns the single successor edge of basic block BB. Aborts if
548
BB does not have exactly one successor. */
549
550
static inline edge
551
single_succ_edge (const_basic_block bb)
552
{
553
gcc_checking_assert (single_succ_p (bb));
554
return EDGE_SUCC (bb, 0);
555
}
556
557
/* Returns the single predecessor edge of basic block BB. Aborts
558
if BB does not have exactly one predecessor. */
559
560
static inline edge
561
single_pred_edge (const_basic_block bb)
562
{
563
gcc_checking_assert (single_pred_p (bb));
564
return EDGE_PRED (bb, 0);
565
}
566
567
/* Returns the single successor block of basic block BB. Aborts
568
if BB does not have exactly one successor. */
569
570
static inline basic_block
571
single_succ (const_basic_block bb)
572
{
573
return single_succ_edge (bb)->dest;
574
}
575
576
/* Returns the single predecessor block of basic block BB. Aborts
577
if BB does not have exactly one predecessor.*/
578
579
static inline basic_block
580
single_pred (const_basic_block bb)
581
{
582
return single_pred_edge (bb)->src;
583
}
584
585
/* Iterator object for edges. */
586
587
typedef struct {
588
unsigned index;
589
vec<edge, va_gc> **container;
590
} edge_iterator;
591
592
static inline vec<edge, va_gc> *
593
ei_container (edge_iterator i)
594
{
595
gcc_checking_assert (i.container);
596
return *i.container;
597
}
598
599
#define ei_start(iter) ei_start_1 (&(iter))
600
#define ei_last(iter) ei_last_1 (&(iter))
601
602
/* Return an iterator pointing to the start of an edge vector. */
603
static inline edge_iterator
604
ei_start_1 (vec<edge, va_gc> **ev)
605
{
606
edge_iterator i;
607
608
i.index = 0;
609
i.container = ev;
610
611
return i;
612
}
613
614
/* Return an iterator pointing to the last element of an edge
615
vector. */
616
static inline edge_iterator
617
ei_last_1 (vec<edge, va_gc> **ev)
618
{
619
edge_iterator i;
620
621
i.index = EDGE_COUNT (*ev) - 1;
622
i.container = ev;
623
624
return i;
625
}
626
627
/* Is the iterator `i' at the end of the sequence? */
628
static inline bool
629
ei_end_p (edge_iterator i)
630
{
631
return (i.index == EDGE_COUNT (ei_container (i)));
632
}
633
634
/* Is the iterator `i' at one position before the end of the
635
sequence? */
636
static inline bool
637
ei_one_before_end_p (edge_iterator i)
638
{
639
return (i.index + 1 == EDGE_COUNT (ei_container (i)));
640
}
641
642
/* Advance the iterator to the next element. */
643
static inline void
644
ei_next (edge_iterator *i)
645
{
646
gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
647
i->index++;
648
}
649
650
/* Move the iterator to the previous element. */
651
static inline void
652
ei_prev (edge_iterator *i)
653
{
654
gcc_checking_assert (i->index > 0);
655
i->index--;
656
}
657
658
/* Return the edge pointed to by the iterator `i'. */
659
static inline edge
660
ei_edge (edge_iterator i)
661
{
662
return EDGE_I (ei_container (i), i.index);
663
}
664
665
/* Return an edge pointed to by the iterator. Do it safely so that
666
NULL is returned when the iterator is pointing at the end of the
667
sequence. */
668
static inline edge
669
ei_safe_edge (edge_iterator i)
670
{
671
return !ei_end_p (i) ? ei_edge (i) : NULL;
672
}
673
674
/* Return 1 if we should continue to iterate. Return 0 otherwise.
675
*Edge P is set to the next edge if we are to continue to iterate
676
and NULL otherwise. */
677
678
static inline bool
679
ei_cond (edge_iterator ei, edge *p)
680
{
681
if (!ei_end_p (ei))
682
{
683
*p = ei_edge (ei);
684
return 1;
685
}
686
else
687
{
688
*p = NULL;
689
return 0;
690
}
691
}
692
693
/* This macro serves as a convenient way to iterate each edge in a
694
vector of predecessor or successor edges. It must not be used when
695
an element might be removed during the traversal, otherwise
696
elements will be missed. Instead, use a for-loop like that shown
697
in the following pseudo-code:
698
699
FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
700
{
701
IF (e != taken_edge)
702
remove_edge (e);
703
ELSE
704
ei_next (&ei);
705
}
706
*/
707
708
#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
709
for ((ITER) = ei_start ((EDGE_VEC)); \
710
ei_cond ((ITER), &(EDGE)); \
711
ei_next (&(ITER)))
712
713
#define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
714
except for edge forwarding */
715
#define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
716
#define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
717
to care REG_DEAD notes. */
718
#define CLEANUP_THREADING 8 /* Do jump threading. */
719
#define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
720
insns. */
721
#define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
722
#define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
723
724
/* In cfganal.c */
725
extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
726
extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
727
extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
728
extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
729
730
/* In lcm.c */
731
extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
732
sbitmap *, sbitmap *, sbitmap **,
733
sbitmap **);
734
extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
735
sbitmap *, sbitmap *,
736
sbitmap *, sbitmap **,
737
sbitmap **);
738
extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
739
740
/* In predict.c */
741
extern bool maybe_hot_bb_p (struct function *, const_basic_block);
742
extern bool maybe_hot_edge_p (edge);
743
extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
744
extern bool probably_never_executed_edge_p (struct function *, edge);
745
extern bool optimize_bb_for_size_p (const_basic_block);
746
extern bool optimize_bb_for_speed_p (const_basic_block);
747
extern bool optimize_edge_for_size_p (edge);
748
extern bool optimize_edge_for_speed_p (edge);
749
extern bool optimize_loop_for_size_p (struct loop *);
750
extern bool optimize_loop_for_speed_p (struct loop *);
751
extern bool optimize_loop_nest_for_size_p (struct loop *);
752
extern bool optimize_loop_nest_for_speed_p (struct loop *);
753
extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
754
extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
755
extern void gimple_predict_edge (edge, enum br_predictor, int);
756
extern void rtl_predict_edge (edge, enum br_predictor, int);
757
extern void predict_edge_def (edge, enum br_predictor, enum prediction);
758
extern void guess_outgoing_edge_probabilities (basic_block);
759
extern void remove_predictions_associated_with_edge (edge);
760
extern bool edge_probability_reliable_p (const_edge);
761
extern bool br_prob_note_reliable_p (const_rtx);
762
extern bool predictable_edge_p (edge);
763
764
/* In cfg.c */
765
extern void init_flow (struct function *);
766
extern void debug_bb (basic_block);
767
extern basic_block debug_bb_n (int);
768
extern void dump_flow_info (FILE *, int);
769
extern void expunge_block (basic_block);
770
extern void link_block (basic_block, basic_block);
771
extern void unlink_block (basic_block);
772
extern void compact_blocks (void);
773
extern basic_block alloc_block (void);
774
extern void alloc_aux_for_blocks (int);
775
extern void clear_aux_for_blocks (void);
776
extern void free_aux_for_blocks (void);
777
extern void alloc_aux_for_edge (edge, int);
778
extern void alloc_aux_for_edges (int);
779
extern void clear_aux_for_edges (void);
780
extern void free_aux_for_edges (void);
781
782
/* In cfganal.c */
783
extern void find_unreachable_blocks (void);
784
extern bool mark_dfs_back_edges (void);
785
struct edge_list * create_edge_list (void);
786
void free_edge_list (struct edge_list *);
787
void print_edge_list (FILE *, struct edge_list *);
788
void verify_edge_list (FILE *, struct edge_list *);
789
int find_edge_index (struct edge_list *, basic_block, basic_block);
790
edge find_edge (basic_block, basic_block);
791
extern void remove_fake_edges (void);
792
extern void remove_fake_exit_edges (void);
793
extern void add_noreturn_fake_exit_edges (void);
794
extern void connect_infinite_loops_to_exit (void);
795
extern int post_order_compute (int *, bool, bool);
796
extern basic_block dfs_find_deadend (basic_block);
797
extern int inverted_post_order_compute (int *);
798
extern int pre_and_rev_post_order_compute_fn (struct function *,
799
int *, int *, bool);
800
extern int pre_and_rev_post_order_compute (int *, int *, bool);
801
extern int dfs_enumerate_from (basic_block, int,
802
bool (*)(const_basic_block, const void *),
803
basic_block *, int, const void *);
804
extern void compute_dominance_frontiers (struct bitmap_head_def *);
805
extern bitmap compute_idf (bitmap, struct bitmap_head_def *);
806
extern basic_block * single_pred_before_succ_order (void);
807
808
/* In cfgrtl.c */
809
extern rtx block_label (basic_block);
810
extern rtx bb_note (basic_block);
811
extern bool purge_all_dead_edges (void);
812
extern bool purge_dead_edges (basic_block);
813
extern bool fixup_abnormal_edges (void);
814
extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
815
extern bool contains_no_active_insn_p (const_basic_block);
816
extern bool forwarder_block_p (const_basic_block);
817
extern bool can_fallthru (basic_block, basic_block);
818
extern void emit_barrier_after_bb (basic_block bb);
819
extern void fixup_partitions (void);
820
821
/* In cfgbuild.c. */
822
extern void find_many_sub_basic_blocks (sbitmap);
823
extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
824
825
enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
826
827
/* In cfgcleanup.c. */
828
extern bool cleanup_cfg (int);
829
extern int flow_find_cross_jump (basic_block, basic_block, rtx *, rtx *,
830
enum replace_direction*);
831
extern int flow_find_head_matching_sequence (basic_block, basic_block,
832
rtx *, rtx *, int);
833
834
extern bool delete_unreachable_blocks (void);
835
836
extern void update_br_prob_note (basic_block);
837
extern bool inside_basic_block_p (const_rtx);
838
extern bool control_flow_insn_p (const_rtx);
839
extern rtx get_last_bb_insn (basic_block);
840
841
/* In dominance.c */
842
843
enum cdi_direction
844
{
845
CDI_DOMINATORS = 1,
846
CDI_POST_DOMINATORS = 2
847
};
848
849
extern enum dom_state dom_info_state (enum cdi_direction);
850
extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
851
extern bool dom_info_available_p (enum cdi_direction);
852
extern void calculate_dominance_info (enum cdi_direction);
853
extern void free_dominance_info (enum cdi_direction);
854
extern basic_block nearest_common_dominator (enum cdi_direction,
855
basic_block, basic_block);
856
extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
857
bitmap);
858
extern void set_immediate_dominator (enum cdi_direction, basic_block,
859
basic_block);
860
extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
861
extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
862
extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
863
extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
864
basic_block *,
865
unsigned);
866
extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
867
basic_block, int);
868
extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
869
basic_block);
870
extern void add_to_dominance_info (enum cdi_direction, basic_block);
871
extern void delete_from_dominance_info (enum cdi_direction, basic_block);
872
basic_block recompute_dominator (enum cdi_direction, basic_block);
873
extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
874
basic_block);
875
extern void iterate_fix_dominators (enum cdi_direction,
876
vec<basic_block> , bool);
877
extern void verify_dominators (enum cdi_direction);
878
extern basic_block first_dom_son (enum cdi_direction, basic_block);
879
extern basic_block next_dom_son (enum cdi_direction, basic_block);
880
unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
881
unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
882
883
extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
884
extern void break_superblocks (void);
885
extern void relink_block_chain (bool);
886
extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
887
extern void init_rtl_bb_info (basic_block);
888
889
extern void initialize_original_copy_tables (void);
890
extern void free_original_copy_tables (void);
891
extern void set_bb_original (basic_block, basic_block);
892
extern basic_block get_bb_original (basic_block);
893
extern void set_bb_copy (basic_block, basic_block);
894
extern basic_block get_bb_copy (basic_block);
895
void set_loop_copy (struct loop *, struct loop *);
896
struct loop *get_loop_copy (struct loop *);
897
898
#include "
cfghooks.h
"
899
900
/* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
901
static inline bool
902
bb_has_eh_pred (basic_block bb)
903
{
904
edge e;
905
edge_iterator ei;
906
907
FOR_EACH_EDGE (e, ei, bb->preds)
908
{
909
if (e->flags & EDGE_EH)
910
return true;
911
}
912
return false;
913
}
914
915
/* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
916
static inline bool
917
bb_has_abnormal_pred (basic_block bb)
918
{
919
edge e;
920
edge_iterator ei;
921
922
FOR_EACH_EDGE (e, ei, bb->preds)
923
{
924
if (e->flags & EDGE_ABNORMAL)
925
return true;
926
}
927
return false;
928
}
929
930
/* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
931
static inline edge
932
find_fallthru_edge (vec<edge, va_gc> *edges)
933
{
934
edge e;
935
edge_iterator ei;
936
937
FOR_EACH_EDGE (e, ei, edges)
938
if (e->flags & EDGE_FALLTHRU)
939
break;
940
941
return e;
942
}
943
944
/* In cfgloopmanip.c. */
945
extern edge mfb_kj_edge;
946
extern bool mfb_keep_just (edge);
947
948
/* In cfgexpand.c. */
949
extern void rtl_profile_for_bb (basic_block);
950
extern void rtl_profile_for_edge (edge);
951
extern void default_rtl_profile (void);
952
953
/* In profile.c. */
954
typedef struct gcov_working_set_info gcov_working_set_t;
955
extern gcov_working_set_t *find_working_set (unsigned pct_times_10);
956
957
/* Check tha probability is sane. */
958
959
static inline void
960
check_probability (int prob)
961
{
962
gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
963
}
964
965
/* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
966
Used to combine BB probabilities. */
967
968
static inline int
969
combine_probabilities (int prob1, int prob2)
970
{
971
check_probability (prob1);
972
check_probability (prob2);
973
return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
974
}
975
976
/* Apply scale factor SCALE on frequency or count FREQ. Use this
977
interface when potentially scaling up, so that SCALE is not
978
constrained to be < REG_BR_PROB_BASE. */
979
980
static inline gcov_type
981
apply_scale (gcov_type freq, gcov_type scale)
982
{
983
return RDIV (freq * scale, REG_BR_PROB_BASE);
984
}
985
986
/* Apply probability PROB on frequency or count FREQ. */
987
988
static inline gcov_type
989
apply_probability (gcov_type freq, int prob)
990
{
991
check_probability (prob);
992
return apply_scale (freq, prob);
993
}
994
995
/* Return inverse probability for PROB. */
996
997
static inline int
998
inverse_probability (int prob1)
999
{
1000
check_probability (prob1);
1001
return REG_BR_PROB_BASE - prob1;
1002
}
1003
#endif /* GCC_BASIC_BLOCK_H */
gcc
basic-block.h
Generated by
1.8.1.1