GCC Middle and Back End API Reference
bitmap.h
Go to the documentation of this file.
1 /* Functions to support general ended bitmaps.
2  Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19 
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22 
23 /* Implementation of sparse integer sets as a linked list.
24 
25  This sparse set representation is suitable for sparse sets with an
26  unknown (a priori) universe. The set is represented as a double-linked
27  list of container nodes (struct bitmap_element_def). Each node consists
28  of an index for the first member that could be held in the container,
29  a small array of integers that represent the members in the container,
30  and pointers to the next and previous element in the linked list. The
31  elements in the list are sorted in ascending order, i.e. the head of
32  the list holds the element with the smallest member of the set.
33 
34  For a given member I in the set:
35  - the element for I will have index is I / (bits per element)
36  - the position for I within element is I % (bits per element)
37 
38  This representation is very space-efficient for large sparse sets, and
39  the size of the set can be changed dynamically without much overhead.
40  An important parameter is the number of bits per element. In this
41  implementation, there are 128 bits per element. This results in a
42  high storage overhead *per element*, but a small overall overhead if
43  the set is very sparse.
44 
45  The downside is that many operations are relatively slow because the
46  linked list has to be traversed to test membership (i.e. member_p/
47  add_member/remove_member). To improve the performance of this set
48  representation, the last accessed element and its index are cached.
49  For membership tests on members close to recently accessed members,
50  the cached last element improves membership test to a constant-time
51  operation.
52 
53  The following operations can always be performed in O(1) time:
54 
55  * clear : bitmap_clear
56  * choose_one : (not implemented, but could be
57  implemented in constant time)
58 
59  The following operations can be performed in O(E) time worst-case (with
60  E the number of elements in the linked list), but in O(1) time with a
61  suitable access patterns:
62 
63  * member_p : bitmap_bit_p
64  * add_member : bitmap_set_bit
65  * remove_member : bitmap_clear_bit
66 
67  The following operations can be performed in O(E) time:
68 
69  * cardinality : bitmap_count_bits
70  * set_size : bitmap_last_set_bit (but this could
71  in constant time with a pointer to
72  the last element in the chain)
73 
74  Additionally, the linked-list sparse set representation supports
75  enumeration of the members in O(E) time:
76 
77  * forall : EXECUTE_IF_SET_IN_BITMAP
78  * set_copy : bitmap_copy
79  * set_intersection : bitmap_intersect_p /
80  bitmap_and / bitmap_and_into /
81  EXECUTE_IF_AND_IN_BITMAP
82  * set_union : bitmap_ior / bitmap_ior_into
83  * set_difference : bitmap_intersect_compl_p /
84  bitmap_and_comp / bitmap_and_comp_into /
85  EXECUTE_IF_AND_COMPL_IN_BITMAP
86  * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87  * set_compare : bitmap_equal_p
88 
89  Some operations on 3 sets that occur frequently in in data flow problems
90  are also implemented:
91 
92  * A | (B & C) : bitmap_ior_and_into
93  * A | (B & ~C) : bitmap_ior_and_compl /
94  bitmap_ior_and_compl_into
95 
96  The storage requirements for linked-list sparse sets are O(E), with E->N
97  in the worst case (a sparse set with large distances between the values
98  of the set members).
99 
100  The linked-list set representation works well for problems involving very
101  sparse sets. The canonical example in GCC is, of course, the "set of
102  sets" for some CFG-based data flow problems (liveness analysis, dominance
103  frontiers, etc.).
104 
105  This representation also works well for data flow problems where the size
106  of the set may grow dynamically, but care must be taken that the member_p,
107  add_member, and remove_member operations occur with a suitable access
108  pattern.
109 
110  For random-access sets with a known, relatively small universe size, the
111  SparseSet or simple bitmap representations may be more efficient than a
112  linked-list set. For random-access sets of unknown universe, a hash table
113  or a balanced binary tree representation is likely to be a more suitable
114  choice.
115 
116  Traversing linked lists is usually cache-unfriendly, even with the last
117  accessed element cached.
118 
119  Cache performance can be improved by keeping the elements in the set
120  grouped together in memory, using a dedicated obstack for a set (or group
121  of related sets). Elements allocated on obstacks are released to a
122  free-list and taken off the free list. If multiple sets are allocated on
123  the same obstack, elements freed from one set may be re-used for one of
124  the other sets. This usually helps avoid cache misses.
125 
126  A single free-list is used for all sets allocated in GGC space. This is
127  bad for persistent sets, so persistent sets should be allocated on an
128  obstack whenever possible. */
129 
130 #include "hashtab.h"
131 #include "statistics.h"
132 #include "obstack.h"
133 
134 /* Fundamental storage type for bitmap. */
135 
136 typedef unsigned long BITMAP_WORD;
137 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138  it is used in preprocessor directives -- hence the 1u. */
139 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140 
141 /* Number of words to use for each element in the linked list. */
142 
143 #ifndef BITMAP_ELEMENT_WORDS
144 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
145 #endif
146 
147 /* Number of bits in each actual element of a bitmap. */
148 
149 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
150 
151 /* Obstack for allocating bitmaps and elements from. */
152 typedef struct GTY (()) bitmap_obstack {
153  struct bitmap_element_def *elements;
154  struct bitmap_head_def *heads;
155  struct obstack GTY ((skip)) obstack;
157 
158 /* Bitmap set element. We use a linked list to hold only the bits that
159  are set. This allows for use to grow the bitset dynamically without
160  having to realloc and copy a giant bit array.
162  The free list is implemented as a list of lists. There is one
163  outer list connected together by prev fields. Each element of that
164  outer is an inner list (that may consist only of the outer list
165  element) that are connected by the next fields. The prev pointer
166  is undefined for interior elements. This allows
167  bitmap_elt_clear_from to be implemented in unit time rather than
168  linear in the number of elements to be freed. */
169 
170 typedef struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element_def {
171  struct bitmap_element_def *next; /* Next element. */
172  struct bitmap_element_def *prev; /* Previous element. */
173  unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
174  BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
175 } bitmap_element;
176 
177 /* Head of bitmap linked list. The 'current' member points to something
178  already pointed to by the chain started by first, so GTY((skip)) it. */
180 typedef struct GTY(()) bitmap_head_def {
181  unsigned int indx; /* Index of last element looked at. */
182  unsigned int descriptor_id; /* Unique identifier for the allocation
183  site of this bitmap, for detailed
184  statistics gathering. */
185  bitmap_element *first; /* First element in linked list. */
186  bitmap_element * GTY((skip(""))) current; /* Last element looked at. */
187  bitmap_obstack *obstack; /* Obstack to allocate elements from.
188  If NULL, then use GGC allocation. */
189 } bitmap_head;
191 /* Global data */
192 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
193 extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
195 /* Clear a bitmap by freeing up the linked list. */
196 extern void bitmap_clear (bitmap);
197 
198 /* Copy a bitmap to another bitmap. */
199 extern void bitmap_copy (bitmap, const_bitmap);
200 
201 /* True if two bitmaps are identical. */
202 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
203 
204 /* True if the bitmaps intersect (their AND is non-empty). */
205 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
206 
207 /* True if the complement of the second intersects the first (their
208  AND_COMPL is non-empty). */
209 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
210 
211 /* True if MAP is an empty bitmap. */
212 inline bool bitmap_empty_p (const_bitmap map)
213 {
214  return !map->first;
215 }
216 
217 /* True if the bitmap has only a single bit set. */
218 extern bool bitmap_single_bit_set_p (const_bitmap);
219 
220 /* Count the number of bits set in the bitmap. */
221 extern unsigned long bitmap_count_bits (const_bitmap);
222 
223 /* Boolean operations on bitmaps. The _into variants are two operand
224  versions that modify the first source operand. The other variants
225  are three operand versions that to not destroy the source bitmaps.
226  The operations supported are &, & ~, |, ^. */
227 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
228 extern bool bitmap_and_into (bitmap, const_bitmap);
229 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
230 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
231 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
232 extern void bitmap_compl_and_into (bitmap, const_bitmap);
233 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
234 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
235 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
236 extern bool bitmap_ior_into (bitmap, const_bitmap);
237 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
238 extern void bitmap_xor_into (bitmap, const_bitmap);
239 
240 /* DST = A | (B & C). Return true if DST changes. */
241 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
242 /* DST = A | (B & ~C). Return true if DST changes. */
243 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
244  const_bitmap B, const_bitmap C);
245 /* A |= (B & ~C). Return true if A changes. */
246 extern bool bitmap_ior_and_compl_into (bitmap A,
247  const_bitmap B, const_bitmap C);
248 
249 /* Clear a single bit in a bitmap. Return true if the bit changed. */
250 extern bool bitmap_clear_bit (bitmap, int);
251 
252 /* Set a single bit in a bitmap. Return true if the bit changed. */
253 extern bool bitmap_set_bit (bitmap, int);
254 
255 /* Return true if a register is set in a register set. */
256 extern int bitmap_bit_p (bitmap, int);
257 
258 /* Debug functions to print a bitmap linked list. */
259 extern void debug_bitmap (const_bitmap);
260 extern void debug_bitmap_file (FILE *, const_bitmap);
261 
262 /* Print a bitmap. */
263 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
264 
265 /* Initialize and release a bitmap obstack. */
266 extern void bitmap_obstack_initialize (bitmap_obstack *);
267 extern void bitmap_obstack_release (bitmap_obstack *);
268 extern void bitmap_register (bitmap MEM_STAT_DECL);
269 extern void dump_bitmap_statistics (void);
270 
271 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
272  to allocate from, NULL for GC'd bitmap. */
273 
274 static inline void
275 bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
276 {
277  head->first = head->current = NULL;
278  head->obstack = obstack;
279  if (GATHER_STATISTICS)
280  bitmap_register (head PASS_MEM_STAT);
281 }
282 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
283 
284 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
285 extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
286 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
287 extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
288 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
289 extern void bitmap_obstack_free (bitmap);
290 
291 /* A few compatibility/functions macros for compatibility with sbitmaps */
292 inline void dump_bitmap (FILE *file, const_bitmap map)
293 {
294  bitmap_print (file, map, "", "\n");
295 }
296 extern void debug (const bitmap_head_def &ref);
297 extern void debug (const bitmap_head_def *ptr);
298 
299 extern unsigned bitmap_first_set_bit (const_bitmap);
300 extern unsigned bitmap_last_set_bit (const_bitmap);
301 
302 /* Compute bitmap hash (for purposes of hashing etc.) */
303 extern hashval_t bitmap_hash (const_bitmap);
305 /* Allocate a bitmap from a bit obstack. */
306 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
307 
308 /* Allocate a gc'd bitmap. */
309 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
310 
311 /* Do any cleanup needed on a bitmap when it is no longer used. */
312 #define BITMAP_FREE(BITMAP) \
313  ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
314 
315 /* Iterator for bitmaps. */
316 
317 typedef struct
318 {
319  /* Pointer to the current bitmap element. */
320  bitmap_element *elt1;
321 
322  /* Pointer to 2nd bitmap element when two are involved. */
323  bitmap_element *elt2;
324 
325  /* Word within the current element. */
326  unsigned word_no;
327 
328  /* Contents of the actually processed word. When finding next bit
329  it is shifted right, so that the actual bit is always the least
330  significant bit of ACTUAL. */
331  BITMAP_WORD bits;
332 } bitmap_iterator;
333 
334 /* Initialize a single bitmap iterator. START_BIT is the first bit to
335  iterate from. */
336 
337 static inline void
338 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
339  unsigned start_bit, unsigned *bit_no)
340 {
341  bi->elt1 = map->first;
342  bi->elt2 = NULL;
343 
344  /* Advance elt1 until it is not before the block containing start_bit. */
345  while (1)
346  {
347  if (!bi->elt1)
348  {
349  bi->elt1 = &bitmap_zero_bits;
350  break;
351  }
352 
353  if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
354  break;
355  bi->elt1 = bi->elt1->next;
356  }
358  /* We might have gone past the start bit, so reinitialize it. */
359  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
360  start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
362  /* Initialize for what is now start_bit. */
363  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
364  bi->bits = bi->elt1->bits[bi->word_no];
365  bi->bits >>= start_bit % BITMAP_WORD_BITS;
366 
367  /* If this word is zero, we must make sure we're not pointing at the
368  first bit, otherwise our incrementing to the next word boundary
369  will fail. It won't matter if this increment moves us into the
370  next word. */
371  start_bit += !bi->bits;
372 
373  *bit_no = start_bit;
374 }
375 
376 /* Initialize an iterator to iterate over the intersection of two
377  bitmaps. START_BIT is the bit to commence from. */
378 
379 static inline void
380 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
381  unsigned start_bit, unsigned *bit_no)
382 {
383  bi->elt1 = map1->first;
384  bi->elt2 = map2->first;
385 
386  /* Advance elt1 until it is not before the block containing
387  start_bit. */
388  while (1)
389  {
390  if (!bi->elt1)
391  {
392  bi->elt2 = NULL;
393  break;
394  }
395 
396  if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
397  break;
398  bi->elt1 = bi->elt1->next;
399  }
400 
401  /* Advance elt2 until it is not before elt1. */
402  while (1)
403  {
404  if (!bi->elt2)
405  {
406  bi->elt1 = bi->elt2 = &bitmap_zero_bits;
407  break;
408  }
409 
410  if (bi->elt2->indx >= bi->elt1->indx)
411  break;
412  bi->elt2 = bi->elt2->next;
413  }
414 
415  /* If we're at the same index, then we have some intersecting bits. */
416  if (bi->elt1->indx == bi->elt2->indx)
417  {
418  /* We might have advanced beyond the start_bit, so reinitialize
419  for that. */
420  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
421  start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
422 
423  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
424  bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
425  bi->bits >>= start_bit % BITMAP_WORD_BITS;
426  }
427  else
428  {
429  /* Otherwise we must immediately advance elt1, so initialize for
430  that. */
431  bi->word_no = BITMAP_ELEMENT_WORDS - 1;
432  bi->bits = 0;
433  }
434 
435  /* If this word is zero, we must make sure we're not pointing at the
436  first bit, otherwise our incrementing to the next word boundary
437  will fail. It won't matter if this increment moves us into the
438  next word. */
439  start_bit += !bi->bits;
440 
441  *bit_no = start_bit;
442 }
443 
444 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
445  */
446 
447 static inline void
448 bmp_iter_and_compl_init (bitmap_iterator *bi,
449  const_bitmap map1, const_bitmap map2,
450  unsigned start_bit, unsigned *bit_no)
451 {
452  bi->elt1 = map1->first;
453  bi->elt2 = map2->first;
454 
455  /* Advance elt1 until it is not before the block containing start_bit. */
456  while (1)
457  {
458  if (!bi->elt1)
459  {
460  bi->elt1 = &bitmap_zero_bits;
461  break;
462  }
463 
464  if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
465  break;
466  bi->elt1 = bi->elt1->next;
467  }
468 
469  /* Advance elt2 until it is not before elt1. */
470  while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
471  bi->elt2 = bi->elt2->next;
472 
473  /* We might have advanced beyond the start_bit, so reinitialize for
474  that. */
475  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
476  start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
477 
478  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
479  bi->bits = bi->elt1->bits[bi->word_no];
480  if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
481  bi->bits &= ~bi->elt2->bits[bi->word_no];
482  bi->bits >>= start_bit % BITMAP_WORD_BITS;
483 
484  /* If this word is zero, we must make sure we're not pointing at the
485  first bit, otherwise our incrementing to the next word boundary
486  will fail. It won't matter if this increment moves us into the
487  next word. */
488  start_bit += !bi->bits;
489 
490  *bit_no = start_bit;
491 }
492 
493 /* Advance to the next bit in BI. We don't advance to the next
494  nonzero bit yet. */
495 
496 static inline void
497 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
498 {
499  bi->bits >>= 1;
500  *bit_no += 1;
501 }
502 
503 /* Advance to first set bit in BI. */
504 
505 static inline void
506 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
507 {
508 #if (GCC_VERSION >= 3004)
509  {
510  unsigned int n = __builtin_ctzl (bi->bits);
511  gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
512  bi->bits >>= n;
513  *bit_no += n;
514  }
515 #else
516  while (!(bi->bits & 1))
517  {
518  bi->bits >>= 1;
519  *bit_no += 1;
520  }
521 #endif
522 }
523 
524 /* Advance to the next nonzero bit of a single bitmap, we will have
525  already advanced past the just iterated bit. Return true if there
526  is a bit to iterate. */
527 
528 static inline bool
529 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
530 {
531  /* If our current word is nonzero, it contains the bit we want. */
532  if (bi->bits)
533  {
534  next_bit:
535  bmp_iter_next_bit (bi, bit_no);
536  return true;
537  }
538 
539  /* Round up to the word boundary. We might have just iterated past
540  the end of the last word, hence the -1. It is not possible for
541  bit_no to point at the beginning of the now last word. */
542  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
543  / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
544  bi->word_no++;
545 
546  while (1)
547  {
548  /* Find the next nonzero word in this elt. */
549  while (bi->word_no != BITMAP_ELEMENT_WORDS)
550  {
551  bi->bits = bi->elt1->bits[bi->word_no];
552  if (bi->bits)
553  goto next_bit;
554  *bit_no += BITMAP_WORD_BITS;
555  bi->word_no++;
556  }
557 
558  /* Advance to the next element. */
559  bi->elt1 = bi->elt1->next;
560  if (!bi->elt1)
561  return false;
562  *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
563  bi->word_no = 0;
564  }
565 }
566 
567 /* Advance to the next nonzero bit of an intersecting pair of
568  bitmaps. We will have already advanced past the just iterated bit.
569  Return true if there is a bit to iterate. */
570 
571 static inline bool
572 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
573 {
574  /* If our current word is nonzero, it contains the bit we want. */
575  if (bi->bits)
576  {
577  next_bit:
578  bmp_iter_next_bit (bi, bit_no);
579  return true;
580  }
581 
582  /* Round up to the word boundary. We might have just iterated past
583  the end of the last word, hence the -1. It is not possible for
584  bit_no to point at the beginning of the now last word. */
585  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
586  / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
587  bi->word_no++;
588 
589  while (1)
590  {
591  /* Find the next nonzero word in this elt. */
592  while (bi->word_no != BITMAP_ELEMENT_WORDS)
593  {
594  bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
595  if (bi->bits)
596  goto next_bit;
597  *bit_no += BITMAP_WORD_BITS;
598  bi->word_no++;
599  }
600 
601  /* Advance to the next identical element. */
602  do
603  {
604  /* Advance elt1 while it is less than elt2. We always want
605  to advance one elt. */
606  do
607  {
608  bi->elt1 = bi->elt1->next;
609  if (!bi->elt1)
610  return false;
611  }
612  while (bi->elt1->indx < bi->elt2->indx);
613 
614  /* Advance elt2 to be no less than elt1. This might not
615  advance. */
616  while (bi->elt2->indx < bi->elt1->indx)
617  {
618  bi->elt2 = bi->elt2->next;
619  if (!bi->elt2)
620  return false;
621  }
622  }
623  while (bi->elt1->indx != bi->elt2->indx);
624 
625  *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
626  bi->word_no = 0;
627  }
628 }
629 
630 /* Advance to the next nonzero bit in the intersection of
631  complemented bitmaps. We will have already advanced past the just
632  iterated bit. */
633 
634 static inline bool
635 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
636 {
637  /* If our current word is nonzero, it contains the bit we want. */
638  if (bi->bits)
639  {
640  next_bit:
641  bmp_iter_next_bit (bi, bit_no);
642  return true;
643  }
644 
645  /* Round up to the word boundary. We might have just iterated past
646  the end of the last word, hence the -1. It is not possible for
647  bit_no to point at the beginning of the now last word. */
648  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
649  / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
650  bi->word_no++;
651 
652  while (1)
653  {
654  /* Find the next nonzero word in this elt. */
655  while (bi->word_no != BITMAP_ELEMENT_WORDS)
656  {
657  bi->bits = bi->elt1->bits[bi->word_no];
658  if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
659  bi->bits &= ~bi->elt2->bits[bi->word_no];
660  if (bi->bits)
661  goto next_bit;
662  *bit_no += BITMAP_WORD_BITS;
663  bi->word_no++;
664  }
665 
666  /* Advance to the next element of elt1. */
667  bi->elt1 = bi->elt1->next;
668  if (!bi->elt1)
669  return false;
670 
671  /* Advance elt2 until it is no less than elt1. */
672  while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
673  bi->elt2 = bi->elt2->next;
674 
675  *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
676  bi->word_no = 0;
677  }
678 }
679 
680 /* Loop over all bits set in BITMAP, starting with MIN and setting
681  BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
682  should be treated as a read-only variable as it contains loop
683  state. */
684 
685 #ifndef EXECUTE_IF_SET_IN_BITMAP
686 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
687 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
688  for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
689  bmp_iter_set (&(ITER), &(BITNUM)); \
690  bmp_iter_next (&(ITER), &(BITNUM)))
691 #endif
692 
693 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
694  and setting BITNUM to the bit number. ITER is a bitmap iterator.
695  BITNUM should be treated as a read-only variable as it contains
696  loop state. */
697 
698 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
699  for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
700  &(BITNUM)); \
701  bmp_iter_and (&(ITER), &(BITNUM)); \
702  bmp_iter_next (&(ITER), &(BITNUM)))
703 
704 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
705  and setting BITNUM to the bit number. ITER is a bitmap iterator.
706  BITNUM should be treated as a read-only variable as it contains
707  loop state. */
708 
709 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
710  for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
711  &(BITNUM)); \
712  bmp_iter_and_compl (&(ITER), &(BITNUM)); \
713  bmp_iter_next (&(ITER), &(BITNUM)))
714 
715 #endif /* GCC_BITMAP_H */