GCC Middle and Back End API Reference
Main Page
Namespaces
Data Structures
Files
File List
Globals
bitmap.h
Go to the documentation of this file.
1
/* Functions to support general ended bitmaps.
2
Copyright (C) 1997-2013 Free Software Foundation, Inc.
3
4
This file is part of GCC.
5
6
GCC is free software; you can redistribute it and/or modify it under
7
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
10
11
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12
WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
for more details.
15
16
You should have received a copy of the GNU General Public License
17
along with GCC; see the file COPYING3. If not see
18
<http://www.gnu.org/licenses/>. */
19
20
#ifndef GCC_BITMAP_H
21
#define GCC_BITMAP_H
22
23
/* Implementation of sparse integer sets as a linked list.
24
25
This sparse set representation is suitable for sparse sets with an
26
unknown (a priori) universe. The set is represented as a double-linked
27
list of container nodes (struct bitmap_element_def). Each node consists
28
of an index for the first member that could be held in the container,
29
a small array of integers that represent the members in the container,
30
and pointers to the next and previous element in the linked list. The
31
elements in the list are sorted in ascending order, i.e. the head of
32
the list holds the element with the smallest member of the set.
33
34
For a given member I in the set:
35
- the element for I will have index is I / (bits per element)
36
- the position for I within element is I % (bits per element)
37
38
This representation is very space-efficient for large sparse sets, and
39
the size of the set can be changed dynamically without much overhead.
40
An important parameter is the number of bits per element. In this
41
implementation, there are 128 bits per element. This results in a
42
high storage overhead *per element*, but a small overall overhead if
43
the set is very sparse.
44
45
The downside is that many operations are relatively slow because the
46
linked list has to be traversed to test membership (i.e. member_p/
47
add_member/remove_member). To improve the performance of this set
48
representation, the last accessed element and its index are cached.
49
For membership tests on members close to recently accessed members,
50
the cached last element improves membership test to a constant-time
51
operation.
52
53
The following operations can always be performed in O(1) time:
54
55
* clear : bitmap_clear
56
* choose_one : (not implemented, but could be
57
implemented in constant time)
58
59
The following operations can be performed in O(E) time worst-case (with
60
E the number of elements in the linked list), but in O(1) time with a
61
suitable access patterns:
62
63
* member_p : bitmap_bit_p
64
* add_member : bitmap_set_bit
65
* remove_member : bitmap_clear_bit
66
67
The following operations can be performed in O(E) time:
68
69
* cardinality : bitmap_count_bits
70
* set_size : bitmap_last_set_bit (but this could
71
in constant time with a pointer to
72
the last element in the chain)
73
74
Additionally, the linked-list sparse set representation supports
75
enumeration of the members in O(E) time:
76
77
* forall : EXECUTE_IF_SET_IN_BITMAP
78
* set_copy : bitmap_copy
79
* set_intersection : bitmap_intersect_p /
80
bitmap_and / bitmap_and_into /
81
EXECUTE_IF_AND_IN_BITMAP
82
* set_union : bitmap_ior / bitmap_ior_into
83
* set_difference : bitmap_intersect_compl_p /
84
bitmap_and_comp / bitmap_and_comp_into /
85
EXECUTE_IF_AND_COMPL_IN_BITMAP
86
* set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87
* set_compare : bitmap_equal_p
88
89
Some operations on 3 sets that occur frequently in in data flow problems
90
are also implemented:
91
92
* A | (B & C) : bitmap_ior_and_into
93
* A | (B & ~C) : bitmap_ior_and_compl /
94
bitmap_ior_and_compl_into
95
96
The storage requirements for linked-list sparse sets are O(E), with E->N
97
in the worst case (a sparse set with large distances between the values
98
of the set members).
99
100
The linked-list set representation works well for problems involving very
101
sparse sets. The canonical example in GCC is, of course, the "set of
102
sets" for some CFG-based data flow problems (liveness analysis, dominance
103
frontiers, etc.).
104
105
This representation also works well for data flow problems where the size
106
of the set may grow dynamically, but care must be taken that the member_p,
107
add_member, and remove_member operations occur with a suitable access
108
pattern.
109
110
For random-access sets with a known, relatively small universe size, the
111
SparseSet or simple bitmap representations may be more efficient than a
112
linked-list set. For random-access sets of unknown universe, a hash table
113
or a balanced binary tree representation is likely to be a more suitable
114
choice.
115
116
Traversing linked lists is usually cache-unfriendly, even with the last
117
accessed element cached.
118
119
Cache performance can be improved by keeping the elements in the set
120
grouped together in memory, using a dedicated obstack for a set (or group
121
of related sets). Elements allocated on obstacks are released to a
122
free-list and taken off the free list. If multiple sets are allocated on
123
the same obstack, elements freed from one set may be re-used for one of
124
the other sets. This usually helps avoid cache misses.
125
126
A single free-list is used for all sets allocated in GGC space. This is
127
bad for persistent sets, so persistent sets should be allocated on an
128
obstack whenever possible. */
129
130
#include "hashtab.h"
131
#include "
statistics.h
"
132
#include "obstack.h"
133
134
/* Fundamental storage type for bitmap. */
135
136
typedef
unsigned
long
BITMAP_WORD
;
137
/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138
it is used in preprocessor directives -- hence the 1u. */
139
#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140
141
/* Number of words to use for each element in the linked list. */
142
143
#ifndef BITMAP_ELEMENT_WORDS
144
#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
145
#endif
146
147
/* Number of bits in each actual element of a bitmap. */
148
149
#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
150
151
/* Obstack for allocating bitmaps and elements from. */
152
typedef
struct
GTY (())
bitmap_obstack
{
153
struct
bitmap_element_def
*elements;
154
struct
bitmap_head_def
*
heads
;
155
struct
obstack
GTY ((skip)) obstack;
156
}
bitmap_obstack
;
157
158
/* Bitmap set element. We use a linked list to hold only the bits that
159
are set. This allows for use to grow the bitset dynamically without
160
having to realloc and copy a giant bit array.
161
162
The free list is implemented as a list of lists. There is one
163
outer list connected together by prev fields. Each element of that
164
outer is an inner list (that may consist only of the outer list
165
element) that are connected by the next fields. The prev pointer
166
is undefined for interior elements. This allows
167
bitmap_elt_clear_from to be implemented in unit time rather than
168
linear in the number of elements to be freed. */
169
170
typedef
struct
GTY((chain_next ("%h.next
"), chain_prev ("
%h.prev
"))) bitmap_element_def {
171
struct bitmap_element_def *next; /* Next element. */
172
struct bitmap_element_def *prev; /* Previous element. */
173
unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
174
BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
175
} bitmap_element;
176
177
/* Head of bitmap linked list. The 'current' member points to something
178
already pointed to by the chain started by first, so GTY((skip)) it. */
179
180
typedef struct GTY(()) bitmap_head_def {
181
unsigned int indx; /* Index of last element looked at. */
182
unsigned int descriptor_id; /* Unique identifier for the allocation
183
site of this bitmap, for detailed
184
statistics gathering. */
185
bitmap_element *first; /* First element in linked list. */
186
bitmap_element * GTY((skip("
"))) current; /* Last element looked at. */
187
bitmap_obstack *obstack; /* Obstack to allocate elements from.
188
If NULL, then use GGC allocation. */
189
} bitmap_head;
190
191
/* Global data */
192
extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
193
extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
194
195
/* Clear a bitmap by freeing up the linked list. */
196
extern void bitmap_clear (bitmap);
197
198
/* Copy a bitmap to another bitmap. */
199
extern void bitmap_copy (bitmap, const_bitmap);
200
201
/* True if two bitmaps are identical. */
202
extern bool bitmap_equal_p (const_bitmap, const_bitmap);
203
204
/* True if the bitmaps intersect (their AND is non-empty). */
205
extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
206
207
/* True if the complement of the second intersects the first (their
208
AND_COMPL is non-empty). */
209
extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
210
211
/* True if MAP is an empty bitmap. */
212
inline bool bitmap_empty_p (const_bitmap map)
213
{
214
return !map->first;
215
}
216
217
/* True if the bitmap has only a single bit set. */
218
extern bool bitmap_single_bit_set_p (const_bitmap);
219
220
/* Count the number of bits set in the bitmap. */
221
extern unsigned long bitmap_count_bits (const_bitmap);
222
223
/* Boolean operations on bitmaps. The _into variants are two operand
224
versions that modify the first source operand. The other variants
225
are three operand versions that to not destroy the source bitmaps.
226
The operations supported are &, & ~, |, ^. */
227
extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
228
extern bool bitmap_and_into (bitmap, const_bitmap);
229
extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
230
extern bool bitmap_and_compl_into (bitmap, const_bitmap);
231
#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
232
extern void bitmap_compl_and_into (bitmap, const_bitmap);
233
extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
234
extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
235
extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
236
extern bool bitmap_ior_into (bitmap, const_bitmap);
237
extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
238
extern void bitmap_xor_into (bitmap, const_bitmap);
239
240
/* DST = A | (B & C). Return true if DST changes. */
241
extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
242
/* DST = A | (B & ~C). Return true if DST changes. */
243
extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
244
const_bitmap B, const_bitmap C);
245
/* A |= (B & ~C). Return true if A changes. */
246
extern bool bitmap_ior_and_compl_into (bitmap A,
247
const_bitmap B, const_bitmap C);
248
249
/* Clear a single bit in a bitmap. Return true if the bit changed. */
250
extern bool bitmap_clear_bit (bitmap, int);
251
252
/* Set a single bit in a bitmap. Return true if the bit changed. */
253
extern bool bitmap_set_bit (bitmap, int);
254
255
/* Return true if a register is set in a register set. */
256
extern int bitmap_bit_p (bitmap, int);
257
258
/* Debug functions to print a bitmap linked list. */
259
extern void debug_bitmap (const_bitmap);
260
extern void debug_bitmap_file (FILE *, const_bitmap);
261
262
/* Print a bitmap. */
263
extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
264
265
/* Initialize and release a bitmap obstack. */
266
extern void bitmap_obstack_initialize (bitmap_obstack *);
267
extern void bitmap_obstack_release (bitmap_obstack *);
268
extern void bitmap_register (bitmap MEM_STAT_DECL);
269
extern void dump_bitmap_statistics (void);
270
271
/* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
272
to allocate from, NULL for GC'd bitmap. */
273
274
static inline void
275
bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
276
{
277
head->first = head->current = NULL;
278
head->obstack = obstack;
279
if (GATHER_STATISTICS)
280
bitmap_register (head PASS_MEM_STAT);
281
}
282
#define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
283
284
/* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
285
extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
286
#define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
287
extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
288
#define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
289
extern void bitmap_obstack_free (bitmap);
290
291
/* A few compatibility/functions macros for compatibility with sbitmaps */
292
inline void dump_bitmap (FILE *file, const_bitmap map)
293
{
294
bitmap_print (file, map, "
", "
\n
");
295
}
296
extern void debug (const bitmap_head_def &ref);
297
extern void debug (const bitmap_head_def *ptr);
298
299
extern unsigned bitmap_first_set_bit (const_bitmap);
300
extern unsigned bitmap_last_set_bit (const_bitmap);
301
302
/* Compute bitmap hash (for purposes of hashing etc.) */
303
extern hashval_t bitmap_hash (const_bitmap);
304
305
/* Allocate a bitmap from a bit obstack. */
306
#define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
307
308
/* Allocate a gc'd bitmap. */
309
#define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
310
311
/* Do any cleanup needed on a bitmap when it is no longer used. */
312
#define BITMAP_FREE(BITMAP) \
313
((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
314
315
/* Iterator for bitmaps. */
316
317
typedef struct
318
{
319
/* Pointer to the current bitmap element. */
320
bitmap_element *elt1;
321
322
/* Pointer to 2nd bitmap element when two are involved. */
323
bitmap_element *elt2;
324
325
/* Word within the current element. */
326
unsigned word_no;
327
328
/* Contents of the actually processed word. When finding next bit
329
it is shifted right, so that the actual bit is always the least
330
significant bit of ACTUAL. */
331
BITMAP_WORD bits;
332
} bitmap_iterator;
333
334
/* Initialize a single bitmap iterator. START_BIT is the first bit to
335
iterate from. */
336
337
static inline void
338
bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
339
unsigned start_bit, unsigned *bit_no)
340
{
341
bi->elt1 = map->first;
342
bi->elt2 = NULL;
343
344
/* Advance elt1 until it is not before the block containing start_bit. */
345
while (1)
346
{
347
if (!bi->elt1)
348
{
349
bi->elt1 = &bitmap_zero_bits;
350
break;
351
}
352
353
if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
354
break;
355
bi->elt1 = bi->elt1->next;
356
}
357
358
/* We might have gone past the start bit, so reinitialize it. */
359
if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
360
start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
361
362
/* Initialize for what is now start_bit. */
363
bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
364
bi->bits = bi->elt1->bits[bi->word_no];
365
bi->bits >>= start_bit % BITMAP_WORD_BITS;
366
367
/* If this word is zero, we must make sure we're not pointing at the
368
first bit, otherwise our incrementing to the next word boundary
369
will fail. It won't matter if this increment moves us into the
370
next word. */
371
start_bit += !bi->bits;
372
373
*bit_no = start_bit;
374
}
375
376
/* Initialize an iterator to iterate over the intersection of two
377
bitmaps. START_BIT is the bit to commence from. */
378
379
static inline void
380
bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
381
unsigned start_bit, unsigned *bit_no)
382
{
383
bi->elt1 = map1->first;
384
bi->elt2 = map2->first;
385
386
/* Advance elt1 until it is not before the block containing
387
start_bit. */
388
while (1)
389
{
390
if (!bi->elt1)
391
{
392
bi->elt2 = NULL;
393
break;
394
}
395
396
if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
397
break;
398
bi->elt1 = bi->elt1->next;
399
}
400
401
/* Advance elt2 until it is not before elt1. */
402
while (1)
403
{
404
if (!bi->elt2)
405
{
406
bi->elt1 = bi->elt2 = &bitmap_zero_bits;
407
break;
408
}
409
410
if (bi->elt2->indx >= bi->elt1->indx)
411
break;
412
bi->elt2 = bi->elt2->next;
413
}
414
415
/* If we're at the same index, then we have some intersecting bits. */
416
if (bi->elt1->indx == bi->elt2->indx)
417
{
418
/* We might have advanced beyond the start_bit, so reinitialize
419
for that. */
420
if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
421
start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
422
423
bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
424
bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
425
bi->bits >>= start_bit % BITMAP_WORD_BITS;
426
}
427
else
428
{
429
/* Otherwise we must immediately advance elt1, so initialize for
430
that. */
431
bi->word_no = BITMAP_ELEMENT_WORDS - 1;
432
bi->bits = 0;
433
}
434
435
/* If this word is zero, we must make sure we're not pointing at the
436
first bit, otherwise our incrementing to the next word boundary
437
will fail. It won't matter if this increment moves us into the
438
next word. */
439
start_bit += !bi->bits;
440
441
*bit_no = start_bit;
442
}
443
444
/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
445
*/
446
447
static inline void
448
bmp_iter_and_compl_init (bitmap_iterator *bi,
449
const_bitmap map1, const_bitmap map2,
450
unsigned start_bit, unsigned *bit_no)
451
{
452
bi->elt1 = map1->first;
453
bi->elt2 = map2->first;
454
455
/* Advance elt1 until it is not before the block containing start_bit. */
456
while (1)
457
{
458
if (!bi->elt1)
459
{
460
bi->elt1 = &bitmap_zero_bits;
461
break;
462
}
463
464
if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
465
break;
466
bi->elt1 = bi->elt1->next;
467
}
468
469
/* Advance elt2 until it is not before elt1. */
470
while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
471
bi->elt2 = bi->elt2->next;
472
473
/* We might have advanced beyond the start_bit, so reinitialize for
474
that. */
475
if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
476
start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
477
478
bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
479
bi->bits = bi->elt1->bits[bi->word_no];
480
if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
481
bi->bits &= ~bi->elt2->bits[bi->word_no];
482
bi->bits >>= start_bit % BITMAP_WORD_BITS;
483
484
/* If this word is zero, we must make sure we're not pointing at the
485
first bit, otherwise our incrementing to the next word boundary
486
will fail. It won't matter if this increment moves us into the
487
next word. */
488
start_bit += !bi->bits;
489
490
*bit_no = start_bit;
491
}
492
493
/* Advance to the next bit in BI. We don't advance to the next
494
nonzero bit yet. */
495
496
static inline void
497
bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
498
{
499
bi->bits >>= 1;
500
*bit_no += 1;
501
}
502
503
/* Advance to first set bit in BI. */
504
505
static inline void
506
bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
507
{
508
#if (GCC_VERSION >= 3004)
509
{
510
unsigned int n = __builtin_ctzl (bi->bits);
511
gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
512
bi->bits >>= n;
513
*bit_no += n;
514
}
515
#else
516
while (!(bi->bits & 1))
517
{
518
bi->bits >>= 1;
519
*bit_no += 1;
520
}
521
#endif
522
}
523
524
/* Advance to the next nonzero bit of a single bitmap, we will have
525
already advanced past the just iterated bit. Return true if there
526
is a bit to iterate. */
527
528
static inline bool
529
bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
530
{
531
/* If our current word is nonzero, it contains the bit we want. */
532
if (bi->bits)
533
{
534
next_bit:
535
bmp_iter_next_bit (bi, bit_no);
536
return true;
537
}
538
539
/* Round up to the word boundary. We might have just iterated past
540
the end of the last word, hence the -1. It is not possible for
541
bit_no to point at the beginning of the now last word. */
542
*bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
543
/ BITMAP_WORD_BITS * BITMAP_WORD_BITS);
544
bi->word_no++;
545
546
while (1)
547
{
548
/* Find the next nonzero word in this elt. */
549
while (bi->word_no != BITMAP_ELEMENT_WORDS)
550
{
551
bi->bits = bi->elt1->bits[bi->word_no];
552
if (bi->bits)
553
goto next_bit;
554
*bit_no += BITMAP_WORD_BITS;
555
bi->word_no++;
556
}
557
558
/* Advance to the next element. */
559
bi->elt1 = bi->elt1->next;
560
if (!bi->elt1)
561
return false;
562
*bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
563
bi->word_no = 0;
564
}
565
}
566
567
/* Advance to the next nonzero bit of an intersecting pair of
568
bitmaps. We will have already advanced past the just iterated bit.
569
Return true if there is a bit to iterate. */
570
571
static inline bool
572
bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
573
{
574
/* If our current word is nonzero, it contains the bit we want. */
575
if (bi->bits)
576
{
577
next_bit:
578
bmp_iter_next_bit (bi, bit_no);
579
return true;
580
}
581
582
/* Round up to the word boundary. We might have just iterated past
583
the end of the last word, hence the -1. It is not possible for
584
bit_no to point at the beginning of the now last word. */
585
*bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
586
/ BITMAP_WORD_BITS * BITMAP_WORD_BITS);
587
bi->word_no++;
588
589
while (1)
590
{
591
/* Find the next nonzero word in this elt. */
592
while (bi->word_no != BITMAP_ELEMENT_WORDS)
593
{
594
bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
595
if (bi->bits)
596
goto next_bit;
597
*bit_no += BITMAP_WORD_BITS;
598
bi->word_no++;
599
}
600
601
/* Advance to the next identical element. */
602
do
603
{
604
/* Advance elt1 while it is less than elt2. We always want
605
to advance one elt. */
606
do
607
{
608
bi->elt1 = bi->elt1->next;
609
if (!bi->elt1)
610
return false;
611
}
612
while (bi->elt1->indx < bi->elt2->indx);
613
614
/* Advance elt2 to be no less than elt1. This might not
615
advance. */
616
while (bi->elt2->indx < bi->elt1->indx)
617
{
618
bi->elt2 = bi->elt2->next;
619
if (!bi->elt2)
620
return false;
621
}
622
}
623
while (bi->elt1->indx != bi->elt2->indx);
624
625
*bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
626
bi->word_no = 0;
627
}
628
}
629
630
/* Advance to the next nonzero bit in the intersection of
631
complemented bitmaps. We will have already advanced past the just
632
iterated bit. */
633
634
static inline bool
635
bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
636
{
637
/* If our current word is nonzero, it contains the bit we want. */
638
if (bi->bits)
639
{
640
next_bit:
641
bmp_iter_next_bit (bi, bit_no);
642
return true;
643
}
644
645
/* Round up to the word boundary. We might have just iterated past
646
the end of the last word, hence the -1. It is not possible for
647
bit_no to point at the beginning of the now last word. */
648
*bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
649
/ BITMAP_WORD_BITS * BITMAP_WORD_BITS);
650
bi->word_no++;
651
652
while (1)
653
{
654
/* Find the next nonzero word in this elt. */
655
while (bi->word_no != BITMAP_ELEMENT_WORDS)
656
{
657
bi->bits = bi->elt1->bits[bi->word_no];
658
if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
659
bi->bits &= ~bi->elt2->bits[bi->word_no];
660
if (bi->bits)
661
goto next_bit;
662
*bit_no += BITMAP_WORD_BITS;
663
bi->word_no++;
664
}
665
666
/* Advance to the next element of elt1. */
667
bi->elt1 = bi->elt1->next;
668
if (!bi->elt1)
669
return false;
670
671
/* Advance elt2 until it is no less than elt1. */
672
while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
673
bi->elt2 = bi->elt2->next;
674
675
*bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
676
bi->word_no = 0;
677
}
678
}
679
680
/* Loop over all bits set in BITMAP, starting with MIN and setting
681
BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
682
should be treated as a read-only variable as it contains loop
683
state. */
684
685
#ifndef EXECUTE_IF_SET_IN_BITMAP
686
/* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
687
#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
688
for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
689
bmp_iter_set (&(ITER), &(BITNUM)); \
690
bmp_iter_next (&(ITER), &(BITNUM)))
691
#endif
692
693
/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
694
and setting BITNUM to the bit number. ITER is a bitmap iterator.
695
BITNUM should be treated as a read-only variable as it contains
696
loop state. */
697
698
#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
699
for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
700
&(BITNUM)); \
701
bmp_iter_and (&(ITER), &(BITNUM)); \
702
bmp_iter_next (&(ITER), &(BITNUM)))
703
704
/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
705
and setting BITNUM to the bit number. ITER is a bitmap iterator.
706
BITNUM should be treated as a read-only variable as it contains
707
loop state. */
708
709
#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
710
for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
711
&(BITNUM)); \
712
bmp_iter_and_compl (&(ITER), &(BITNUM)); \
713
bmp_iter_next (&(ITER), &(BITNUM)))
714
715
#endif /* GCC_BITMAP_H */
gcc
bitmap.h
Generated by
1.8.1.1