GCC Middle and Back End API Reference
expmed.h
Go to the documentation of this file.
1 /* Target-dependent costs for expmed.c.
2  Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option; any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19 
20 #ifndef EXPMED_H
21 #define EXPMED_H 1
22 
23 enum alg_code {
34 };
35 
36 /* This structure holds the "cost" of a multiply sequence. The
37  "cost" field holds the total rtx_cost of every operator in the
38  synthetic multiplication sequence, hence cost(a op b) is defined
39  as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
40  The "latency" field holds the minimum possible latency of the
41  synthetic multiply, on a hypothetical infinitely parallel CPU.
42  This is the critical path, or the maximum height, of the expression
43  tree which is the sum of rtx_costs on the most expensive path from
44  any leaf to the root. Hence latency(a op b) is defined as zero for
45  leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
46 
47 struct mult_cost {
48  short cost; /* Total rtx_cost of the multiplication sequence. */
49  short latency; /* The latency of the multiplication sequence. */
50 };
51 
52 /* This macro is used to compare a pointer to a mult_cost against an
53  single integer "rtx_cost" value. This is equivalent to the macro
54  CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
55 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
56  || ((X)->cost == (Y) && (X)->latency < (Y)))
57 
58 /* This macro is used to compare two pointers to mult_costs against
59  each other. The macro returns true if X is cheaper than Y.
60  Currently, the cheaper of two mult_costs is the one with the
61  lower "cost". If "cost"s are tied, the lower latency is cheaper. */
62 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
63  || ((X)->cost == (Y)->cost \
64  && (X)->latency < (Y)->latency))
65 
66 /* This structure records a sequence of operations.
67  `ops' is the number of operations recorded.
68  `cost' is their total cost.
69  The operations are stored in `op' and the corresponding
70  logarithms of the integer coefficients in `log'.
71 
72  These are the operations:
73  alg_zero total := 0;
74  alg_m total := multiplicand;
75  alg_shift total := total * coeff
76  alg_add_t_m2 total := total + multiplicand * coeff;
77  alg_sub_t_m2 total := total - multiplicand * coeff;
78  alg_add_factor total := total * coeff + total;
79  alg_sub_factor total := total * coeff - total;
80  alg_add_t2_m total := total * coeff + multiplicand;
81  alg_sub_t2_m total := total * coeff - multiplicand;
82 
83  The first operand must be either alg_zero or alg_m. */
84 
85 struct algorithm
86 {
87  struct mult_cost cost;
88  short ops;
89  /* The size of the OP and LOG fields are not directly related to the
90  word size, but the worst-case algorithms will be if we have few
91  consecutive ones or zeros, i.e., a multiplicand like 10101010101...
92  In that case we will generate shift-by-2, add, shift-by-2, add,...,
93  in total wordsize operations. */
94  enum alg_code op[MAX_BITS_PER_WORD];
95  char log[MAX_BITS_PER_WORD];
96 };
97 
98 /* The entry for our multiplication cache/hash table. */
99 struct alg_hash_entry {
100  /* The number we are multiplying by. */
101  unsigned HOST_WIDE_INT t;
102 
103  /* The mode in which we are multiplying something by T. */
104  enum machine_mode mode;
105 
106  /* The best multiplication algorithm for t. */
107  enum alg_code alg;
108 
109  /* The cost of multiplication if ALG_CODE is not alg_impossible.
110  Otherwise, the cost within which multiplication by T is
111  impossible. */
112  struct mult_cost cost;
114  /* Optimized for speed? */
115  bool speed;
116 };
118 /* The number of cache/hash entries. */
119 #if HOST_BITS_PER_WIDE_INT == 64
120 #define NUM_ALG_HASH_ENTRIES 1031
121 #else
122 #define NUM_ALG_HASH_ENTRIES 307
123 #endif
124 
125 #define NUM_MODE_INT \
126  (MAX_MODE_INT - MIN_MODE_INT + 1)
127 #define NUM_MODE_PARTIAL_INT \
128  (MIN_MODE_PARTIAL_INT == VOIDmode ? 0 \
129  : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
130 #define NUM_MODE_VECTOR_INT \
131  (MIN_MODE_VECTOR_INT == VOIDmode ? 0 \
132  : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
133 
134 #define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
135 #define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
136 
137 struct expmed_op_cheap {
138  bool cheap[2][NUM_MODE_IPV_INT];
139 };
140 
141 struct expmed_op_costs {
142  int cost[2][NUM_MODE_IPV_INT];
143 };
144 
145 /* Target-dependent globals. */
146 struct target_expmed {
147  /* Each entry of ALG_HASH caches alg_code for some integer. This is
148  actually a hash table. If we have a collision, that the older
149  entry is kicked out. */
150  struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
152  /* True if x_alg_hash might already have been used. */
153  bool x_alg_hash_used_p;
155  /* Nonzero means divides or modulus operations are relatively cheap for
156  powers of two, so don't use branches; emit the operation instead.
157  Usually, this will mean that the MD file will emit non-branch
158  sequences. */
161 
162  /* Cost of various pieces of RTL. Note that some of these are indexed by
163  shift count and some by mode. */
164  int x_zero_cost[2];
167  struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
168  struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
169  struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
170  struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
174  int x_mul_widen_cost[2][NUM_MODE_INT];
175  int x_mul_highpart_cost[2][NUM_MODE_INT];
177  /* Conversion costs are only defined between two scalar integer modes
178  of different sizes. The first machine mode is the destination mode,
179  and the second is the source mode. */
180  int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
181 };
184 #if SWITCHABLE_TARGET
186 #else
187 #define this_target_expmed (&default_target_expmed)
188 #endif
190 /* Return a pointer to the alg_hash_entry at IDX. */
192 static inline struct alg_hash_entry *
194 {
195  return &this_target_expmed->x_alg_hash[idx];
196 }
197 
198 /* Return true if the x_alg_hash field might have been used. */
200 static inline bool
201 alg_hash_used_p (void)
202 {
203  return this_target_expmed->x_alg_hash_used_p;
204 }
205 
206 /* Set whether the x_alg_hash field might have been used. */
207 
208 static inline void
209 set_alg_hash_used_p (bool usedp)
210 {
211  this_target_expmed->x_alg_hash_used_p = usedp;
212 }
214 /* Compute an index into the cost arrays by mode class. */
215 
216 static inline int
217 expmed_mode_index (enum machine_mode mode)
218 {
219  switch (GET_MODE_CLASS (mode))
220  {
221  case MODE_INT:
222  return mode - MIN_MODE_INT;
223  case MODE_PARTIAL_INT:
224  return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
225  case MODE_VECTOR_INT:
226  return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
227  default:
228  gcc_unreachable ();
229  }
230 }
232 /* Return a pointer to a boolean contained in EOC indicating whether
233  a particular operation performed in MODE is cheap when optimizing
234  for SPEED. */
235 
236 static inline bool *
237 expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
238  enum machine_mode mode)
239 {
240  int idx = expmed_mode_index (mode);
241  return &eoc->cheap[speed][idx];
242 }
243 
244 /* Return a pointer to a cost contained in COSTS when a particular
245  operation is performed in MODE when optimizing for SPEED. */
246 
247 static inline int *
249  enum machine_mode mode)
250 {
251  int idx = expmed_mode_index (mode);
252  return &costs->cost[speed][idx];
253 }
254 
255 /* Subroutine of {set_,}sdiv_pow2_cheap. Not to be used otherwise. */
256 
257 static inline bool *
258 sdiv_pow2_cheap_ptr (bool speed, enum machine_mode mode)
259 {
260  return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
261  speed, mode);
262 }
263 
264 /* Set whether a signed division by a power of 2 is cheap in MODE
265  when optimizing for SPEED. */
266 
267 static inline void
268 set_sdiv_pow2_cheap (bool speed, enum machine_mode mode, bool cheap_p)
269 {
270  *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
271 }
272 
273 /* Return whether a signed division by a power of 2 is cheap in MODE
274  when optimizing for SPEED. */
275 
276 static inline bool
277 sdiv_pow2_cheap (bool speed, enum machine_mode mode)
278 {
279  return *sdiv_pow2_cheap_ptr (speed, mode);
280 }
281 
282 /* Subroutine of {set_,}smod_pow2_cheap. Not to be used otherwise. */
283 
284 static inline bool *
285 smod_pow2_cheap_ptr (bool speed, enum machine_mode mode)
286 {
287  return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
288  speed, mode);
289 }
290 
291 /* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
292  optimizing for SPEED. */
293 
294 static inline void
295 set_smod_pow2_cheap (bool speed, enum machine_mode mode, bool cheap)
296 {
297  *smod_pow2_cheap_ptr (speed, mode) = cheap;
298 }
299 
300 /* Return whether a signed modulo by a power of 2 is cheap in MODE
301  when optimizing for SPEED. */
302 
303 static inline bool
304 smod_pow2_cheap (bool speed, enum machine_mode mode)
305 {
306  return *smod_pow2_cheap_ptr (speed, mode);
307 }
308 
309 /* Subroutine of {set_,}zero_cost. Not to be used otherwise. */
310 
311 static inline int *
312 zero_cost_ptr (bool speed)
313 {
314  return &this_target_expmed->x_zero_cost[speed];
315 }
316 
317 /* Set the COST of loading zero when optimizing for SPEED. */
318 
319 static inline void
320 set_zero_cost (bool speed, int cost)
321 {
322  *zero_cost_ptr (speed) = cost;
323 }
324 
325 /* Return the COST of loading zero when optimizing for SPEED. */
326 
327 static inline int
328 zero_cost (bool speed)
329 {
330  return *zero_cost_ptr (speed);
331 }
332 
333 /* Subroutine of {set_,}add_cost. Not to be used otherwise. */
334 
335 static inline int *
336 add_cost_ptr (bool speed, enum machine_mode mode)
337 {
338  return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
339 }
340 
341 /* Set the COST of computing an add in MODE when optimizing for SPEED. */
342 
343 static inline void
344 set_add_cost (bool speed, enum machine_mode mode, int cost)
345 {
346  *add_cost_ptr (speed, mode) = cost;
347 }
348 
349 /* Return the cost of computing an add in MODE when optimizing for SPEED. */
350 
351 static inline int
352 add_cost (bool speed, enum machine_mode mode)
353 {
354  return *add_cost_ptr (speed, mode);
355 }
356 
357 /* Subroutine of {set_,}neg_cost. Not to be used otherwise. */
358 
359 static inline int *
360 neg_cost_ptr (bool speed, enum machine_mode mode)
361 {
362  return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
363 }
364 
365 /* Set the COST of computing a negation in MODE when optimizing for SPEED. */
366 
367 static inline void
368 set_neg_cost (bool speed, enum machine_mode mode, int cost)
369 {
370  *neg_cost_ptr (speed, mode) = cost;
371 }
372 
373 /* Return the cost of computing a negation in MODE when optimizing for
374  SPEED. */
375 
376 static inline int
377 neg_cost (bool speed, enum machine_mode mode)
378 {
379  return *neg_cost_ptr (speed, mode);
380 }
381 
382 /* Subroutine of {set_,}shift_cost. Not to be used otherwise. */
383 
384 static inline int *
385 shift_cost_ptr (bool speed, enum machine_mode mode, int bits)
386 {
387  return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
388  speed, mode);
389 }
390 
391 /* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED. */
392 
393 static inline void
394 set_shift_cost (bool speed, enum machine_mode mode, int bits, int cost)
395 {
396  *shift_cost_ptr (speed, mode, bits) = cost;
397 }
399 /* Return the cost of doing a shift in MODE by BITS when optimizing for
400  SPEED. */
401 
402 static inline int
403 shift_cost (bool speed, enum machine_mode mode, int bits)
404 {
405  return *shift_cost_ptr (speed, mode, bits);
406 }
408 /* Subroutine of {set_,}shiftadd_cost. Not to be used otherwise. */
409 
410 static inline int *
411 shiftadd_cost_ptr (bool speed, enum machine_mode mode, int bits)
412 {
413  return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
414  speed, mode);
415 }
416 
417 /* Set the COST of doing a shift in MODE by BITS followed by an add when
418  optimizing for SPEED. */
419 
420 static inline void
421 set_shiftadd_cost (bool speed, enum machine_mode mode, int bits, int cost)
422 {
423  *shiftadd_cost_ptr (speed, mode, bits) = cost;
424 }
425 
426 /* Return the cost of doing a shift in MODE by BITS followed by an add
427  when optimizing for SPEED. */
428 
429 static inline int
430 shiftadd_cost (bool speed, enum machine_mode mode, int bits)
431 {
432  return *shiftadd_cost_ptr (speed, mode, bits);
433 }
434 
435 /* Subroutine of {set_,}shiftsub0_cost. Not to be used otherwise. */
437 static inline int *
438 shiftsub0_cost_ptr (bool speed, enum machine_mode mode, int bits)
439 {
440  return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
441  speed, mode);
442 }
443 
444 /* Set the COST of doing a shift in MODE by BITS and then subtracting a
445  value when optimizing for SPEED. */
447 static inline void
448 set_shiftsub0_cost (bool speed, enum machine_mode mode, int bits, int cost)
449 {
450  *shiftsub0_cost_ptr (speed, mode, bits) = cost;
451 }
452 
453 /* Return the cost of doing a shift in MODE by BITS and then subtracting
454  a value when optimizing for SPEED. */
456 static inline int
457 shiftsub0_cost (bool speed, enum machine_mode mode, int bits)
458 {
459  return *shiftsub0_cost_ptr (speed, mode, bits);
460 }
461 
462 /* Subroutine of {set_,}shiftsub1_cost. Not to be used otherwise. */
463 
464 static inline int *
465 shiftsub1_cost_ptr (bool speed, enum machine_mode mode, int bits)
466 {
467  return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
468  speed, mode);
469 }
470 
471 /* Set the COST of subtracting a shift in MODE by BITS from a value when
472  optimizing for SPEED. */
473 
474 static inline void
475 set_shiftsub1_cost (bool speed, enum machine_mode mode, int bits, int cost)
476 {
477  *shiftsub1_cost_ptr (speed, mode, bits) = cost;
478 }
479 
480 /* Return the cost of subtracting a shift in MODE by BITS from a value
481  when optimizing for SPEED. */
482 
483 static inline int
484 shiftsub1_cost (bool speed, enum machine_mode mode, int bits)
485 {
486  return *shiftsub1_cost_ptr (speed, mode, bits);
487 }
488 
489 /* Subroutine of {set_,}mul_cost. Not to be used otherwise. */
490 
491 static inline int *
492 mul_cost_ptr (bool speed, enum machine_mode mode)
493 {
494  return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
495 }
497 /* Set the COST of doing a multiplication in MODE when optimizing for
498  SPEED. */
499 
500 static inline void
501 set_mul_cost (bool speed, enum machine_mode mode, int cost)
502 {
503  *mul_cost_ptr (speed, mode) = cost;
504 }
505 
506 /* Return the cost of doing a multiplication in MODE when optimizing
507  for SPEED. */
508 
509 static inline int
510 mul_cost (bool speed, enum machine_mode mode)
511 {
512  return *mul_cost_ptr (speed, mode);
513 }
514 
515 /* Subroutine of {set_,}sdiv_cost. Not to be used otherwise. */
516 
517 static inline int *
518 sdiv_cost_ptr (bool speed, enum machine_mode mode)
519 {
520  return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
521 }
522 
523 /* Set the COST of doing a signed division in MODE when optimizing
524  for SPEED. */
525 
526 static inline void
527 set_sdiv_cost (bool speed, enum machine_mode mode, int cost)
528 {
529  *sdiv_cost_ptr (speed, mode) = cost;
530 }
531 
532 /* Return the cost of doing a signed division in MODE when optimizing
533  for SPEED. */
534 
535 static inline int
536 sdiv_cost (bool speed, enum machine_mode mode)
537 {
538  return *sdiv_cost_ptr (speed, mode);
539 }
540 
541 /* Subroutine of {set_,}udiv_cost. Not to be used otherwise. */
542 
543 static inline int *
544 udiv_cost_ptr (bool speed, enum machine_mode mode)
545 {
546  return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
547 }
548 
549 /* Set the COST of doing an unsigned division in MODE when optimizing
550  for SPEED. */
551 
552 static inline void
553 set_udiv_cost (bool speed, enum machine_mode mode, int cost)
554 {
555  *udiv_cost_ptr (speed, mode) = cost;
556 }
557 
558 /* Return the cost of doing an unsigned division in MODE when
559  optimizing for SPEED. */
560 
561 static inline int
562 udiv_cost (bool speed, enum machine_mode mode)
563 {
564  return *udiv_cost_ptr (speed, mode);
565 }
566 
567 /* Subroutine of {set_,}mul_widen_cost. Not to be used otherwise. */
568 
569 static inline int *
570 mul_widen_cost_ptr (bool speed, enum machine_mode mode)
571 {
572  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
573 
574  return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
575 }
576 
577 /* Set the COST for computing a widening multiplication in MODE when
578  optimizing for SPEED. */
579 
580 static inline void
581 set_mul_widen_cost (bool speed, enum machine_mode mode, int cost)
582 {
583  *mul_widen_cost_ptr (speed, mode) = cost;
584 }
585 
586 /* Return the cost for computing a widening multiplication in MODE when
587  optimizing for SPEED. */
588 
589 static inline int
590 mul_widen_cost (bool speed, enum machine_mode mode)
591 {
592  return *mul_widen_cost_ptr (speed, mode);
593 }
595 /* Subroutine of {set_,}mul_highpart_cost. Not to be used otherwise. */
596 
597 static inline int *
598 mul_highpart_cost_ptr (bool speed, enum machine_mode mode)
599 {
600  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
601 
602  return &this_target_expmed->x_mul_highpart_cost[speed][mode - MIN_MODE_INT];
603 }
604 
605 /* Set the COST for computing the high part of a multiplication in MODE
606  when optimizing for SPEED. */
607 
608 static inline void
609 set_mul_highpart_cost (bool speed, enum machine_mode mode, int cost)
610 {
611  *mul_highpart_cost_ptr (speed, mode) = cost;
612 }
614 /* Return the cost for computing the high part of a multiplication in MODE
615  when optimizing for SPEED. */
616 
617 static inline int
618 mul_highpart_cost (bool speed, enum machine_mode mode)
619 {
620  return *mul_highpart_cost_ptr (speed, mode);
621 }
622 
623 /* Subroutine of {set_,}convert_cost. Not to be used otherwise. */
624 
625 static inline int *
626 convert_cost_ptr (enum machine_mode to_mode, enum machine_mode from_mode,
627  bool speed)
628 {
629  int to_idx = expmed_mode_index (to_mode);
630  int from_idx = expmed_mode_index (from_mode);
631 
632  gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
633  gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
634 
635  return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
636 }
637 
638 /* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
639  for SPEED. */
640 
641 static inline void
642 set_convert_cost (enum machine_mode to_mode, enum machine_mode from_mode,
643  bool speed, int cost)
644 {
645  *convert_cost_ptr (to_mode, from_mode, speed) = cost;
646 }
647 
648 /* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
649  for SPEED. */
650 
651 static inline int
652 convert_cost (enum machine_mode to_mode, enum machine_mode from_mode,
653  bool speed)
654 {
655  return *convert_cost_ptr (to_mode, from_mode, speed);
656 }
657 
658 extern int mult_by_coeff_cost (HOST_WIDE_INT, enum machine_mode, bool);
659 #endif