GCC Middle and Back End API Reference
cselib.c File Reference
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "emit-rtl.h"
#include "diagnostic-core.h"
#include "ggc.h"
#include "hash-table.h"
#include "dumpfile.h"
#include "cselib.h"
#include "valtrack.h"
#include "params.h"
#include "alloc-pool.h"
#include "target.h"
#include "bitmap.h"
#include "gt-cselib.h"
Include dependency graph for cselib.c:

Data Structures

struct  elt_list
struct  expand_value_data
struct  cselib_hasher
struct  cselib_record_autoinc_data

Macros

#define MAX_USELESS_VALUES   32
#define REG_VALUES(i)   reg_values[i]
#define PRESERVED_VALUE_P(RTX)   (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
#define SP_BASED_VALUE_P(RTX)   (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
#define MAX_SETS   (FIRST_PSEUDO_REGISTER * 2)

Functions

static void promote_debug_loc (struct elt_loc_list *l)
static struct elt_listnew_elt_list (struct elt_list *, cselib_val *)
static void new_elt_loc_list (cselib_val *, rtx)
static void unchain_one_value (cselib_val *)
static void unchain_one_elt_list (struct elt_list **)
static void unchain_one_elt_loc_list (struct elt_loc_list **)
static void remove_useless_values (void)
static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode)
static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode)
static cselib_valnew_cselib_val (unsigned int, enum machine_mode, rtx)
static void add_mem_for_addr (cselib_val *, cselib_val *, rtx)
static cselib_valcselib_lookup_mem (rtx, int)
static void cselib_invalidate_regno (unsigned int, enum machine_mode)
static void cselib_invalidate_mem (rtx)
static void cselib_record_set (rtx, cselib_val *, cselib_val *)
static void cselib_record_sets (rtx)
static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int)
static struct elt_listnew_elt_list ()
static void new_elt_loc_list ()
static void promote_debug_loc ()
static void unchain_one_elt_list ()
static void unchain_one_elt_loc_list ()
static void unchain_one_value ()
void cselib_clear_table ()
static bool invariant_or_equiv_p ()
int preserve_constants_and_equivs ()
void cselib_reset_table ()
unsigned int cselib_get_next_uid ()
static cselib_val ** cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert, enum machine_mode memmode)
int references_value_p ()
int discard_useless_locs ()
int discard_useless_values ()
void cselib_preserve_value ()
bool cselib_preserved_value_p ()
void cselib_preserve_cfa_base_value ()
void cselib_preserve_only_values ()
void cselib_set_value_sp_based ()
bool cselib_sp_based_value_p ()
enum machine_mode cselib_reg_set_mode ()
int rtx_equal_for_cselib_p ()
static rtx autoinc_split ()
static int rtx_equal_for_cselib_1 ()
static rtx wrap_constant ()
static unsigned int cselib_hash_rtx ()
static cselib_valnew_cselib_val ()
static void add_mem_for_addr ()
static cselib_valcselib_lookup_mem ()
static rtx expand_loc (struct elt_loc_list *p, struct expand_value_data *evd, int max_depth)
rtx cselib_expand_value_rtx ()
rtx cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth, cselib_expand_callback cb, void *data)
bool cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth, cselib_expand_callback cb, void *data)
rtx cselib_subst_to_values ()
rtx cselib_subst_to_values_from_insn ()
static cselib_valcselib_lookup_1 (rtx x, enum machine_mode mode, int create, enum machine_mode memmode)
cselib_valcselib_lookup_from_insn (rtx x, enum machine_mode mode, int create, enum machine_mode memmode, rtx insn)
cselib_valcselib_lookup (rtx x, enum machine_mode mode, int create, enum machine_mode memmode)
static void cselib_invalidate_regno ()
static void cselib_invalidate_mem ()
void cselib_invalidate_rtx ()
static void cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore, void *data)
static void cselib_record_set ()
void cselib_add_permanent_equiv ()
bool cselib_have_permanent_equivalences ()
static int cselib_record_autoinc_cb (rtx mem, rtx op, rtx dest, rtx src, rtx srcoff, void *arg)
static void cselib_record_sets ()
bool fp_setter_insn ()
void cselib_process_insn ()
void cselib_init ()
void cselib_finish ()
int dump_cselib_val ()
void dump_cselib_table ()

Variables

static enum machine_mode find_slot_memmode
static bool cselib_record_memory
static bool cselib_preserve_constants
static bool cselib_any_perm_equivs
static hash_table< cselib_hashercselib_hash_table
static rtx cselib_current_insn
static unsigned int next_uid
static unsigned int cselib_nregs
static int n_useless_values
static int n_useless_debug_values
static int n_debug_values
static struct elt_list ** reg_values
static unsigned int reg_values_size
static unsigned int max_value_regs
static unsigned int * used_regs
static unsigned int n_used_regs
static rtx callmem
static int values_became_useless
static cselib_val dummy_val
static cselib_valcfa_base_preserved_val
static unsigned int cfa_base_preserved_regno = INVALID_REGNUM
static cselib_valfirst_containing_mem = &dummy_val
static alloc_pool elt_loc_list_pool
static alloc_pool elt_list_pool
static alloc_pool cselib_val_pool
static alloc_pool value_pool
void(* cselib_discard_hook )(cselib_val *)
void(* cselib_record_sets_hook )(rtx insn, struct cselib_set *sets, int n_sets)

Macro Definition Documentation

#define MAX_SETS   (FIRST_PSEUDO_REGISTER * 2)

There is no good way to determine how many elements there can be in a PARALLEL. Since it's fairly cheap, use a really large number.

#define MAX_USELESS_VALUES   32

Number of useless values before we remove them from the hash table.

#define PRESERVED_VALUE_P (   RTX)    (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)

Referenced by cselib_invalidate_mem().

#define REG_VALUES (   i)    reg_values[i]

Referenced by cselib_invalidate_mem().

#define SP_BASED_VALUE_P (   RTX)    (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)

Referenced by cselib_preserve_value().


Function Documentation

static void add_mem_for_addr ( cselib_val ,
cselib_val ,
rtx   
)
static
static void add_mem_for_addr ( )
static

ADDR_ELT is a value that is used as address. MEM_ELT is the value that contains the data at this address. X is a MEM that represents the value. Update the two value structures to represent this situation.

Avoid duplicates.

References bitmap_bit_p, cfa_base_preserved_regno, CSELIB_VAL_PTR, dump_file, dump_flags, GET_CODE, HARD_FRAME_POINTER_REGNUM, elt_loc_list::loc, REG_P, REGNO, and expand_value_data::regs_active.

static rtx autoinc_split ( )
static

If x is a PLUS or an autoinc operation, expand the operation, storing the offset, if any, in *OFF.

void cselib_add_permanent_equiv ( )

Make ELT and X's VALUE equivalent to each other at INSN.

void cselib_clear_table ( void  )

Remove all entries from the hash table. Also used during initialization.

Referenced by fp_setter_insn().

bool cselib_dummy_expand_value_rtx_cb ( rtx  orig,
bitmap  regs_active,
int  max_depth,
cselib_expand_callback  cb,
void *  data 
)

Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied or simplified. Useful to find out whether cselib_expand_value_rtx_cb would return NULL or non-NULL, without allocating new rtx.

References expand_value_data::callback, expand_value_data::callback_arg, and expand_value_data::regs_active.

rtx cselib_expand_value_rtx ( )

Forward substitute and expand an expression out to its roots. This is the opposite of common subexpression. Because local value numbering is such a weak optimization, the expanded expression is pretty much unique (not from a pointer equals point of view but from a tree shape point of view.

This function returns NULL if the expansion fails. The expansion will fail if there is no value number for one of the operands or if one of the operands has been overwritten between the current insn and the beginning of the basic block. For instance x has no expansion in:

r1 <- r1 + 3 x <- r1 + 8

REGS_ACTIVE is a scratch bitmap that should be clear when passing in. It is clear on return.

static rtx cselib_expand_value_rtx_1 ( rtx  orig,
struct expand_value_data evd,
int  max_depth 
)
static

Internal implementation of cselib_expand_value_rtx and cselib_expand_value_rtx_cb.

 For the context of dse, if we end up expand into a huge tree, we
 will not have a useful address, so we might as well just give up
 quickly.   
             The only thing that we are not willing to do (this
             is requirement of dse and if others potential uses
             need this function we should add a parm to control
             it) is that we will not substitute the
             STACK_POINTER_REGNUM, FRAME_POINTER or the
             HARD_FRAME_POINTER.

             These expansions confuses the code that notices that
             stores into the frame go dead at the end of the
             function and that the frame is not effected by calls
             to subroutines.  If you allow the
             STACK_POINTER_REGNUM substitution, then dse will
             think that parameter pushing also goes dead which is
             wrong.  If you allow the FRAME_POINTER or the
             HARD_FRAME_POINTER then you lose the opportunity to
             make the frame assumptions.   
     SCRATCH must be shared because they represent distinct values.   
 Copy the various flags, fields, and other information.  We assume
 that all fields need copying, and then clear the fields that should
 not be copied.  That is the sensible default behavior, and forces
 us to explicitly document why we are *not* copying a flag.   
       These are left unchanged.   
 If an operand has been simplified into CONST_INT, which doesn't
 have a mode and the mode isn't derivable from whole rtx's mode,
 try simplify_*_operation first with mode from original's operand
 and as a fallback wrap CONST_INT into gen_rtx_CONST.   
     These expressions can derive operand modes from the whole rtx's mode.   

Referenced by expand_loc().

rtx cselib_expand_value_rtx_cb ( rtx  orig,
bitmap  regs_active,
int  max_depth,
cselib_expand_callback  cb,
void *  data 
)

Same as cselib_expand_value_rtx, but using a callback to try to resolve some expressions. The CB function should return ORIG if it can't or does not want to deal with a certain RTX. Any other return value, including NULL, will be used as the expansion for VALUE, without any further changes.

Referenced by loc_exp_insert_dep().

static cselib_val** cselib_find_slot ( rtx  x,
hashval_t  hash,
enum insert_option  insert,
enum machine_mode  memmode 
)
static

Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE, INSERTing if requested. When X is part of the address of a MEM, MEMMODE should specify the mode of the MEM. While searching the table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs in X can be resolved.

References elt_loc_list::next, references_value_p(), and unchain_one_elt_loc_list().

void cselib_finish ( void  )

Called when the current user is done with cselib.

unsigned int cselib_get_next_uid ( void  )

Return the number of the next value that will be generated.

Referenced by emit_notes_for_changes().

static unsigned int cselib_hash_rtx ( rtx  ,
int  ,
enum  machine_mode 
)
static
static unsigned int cselib_hash_rtx ( )
static

Hash an rtx. Return 0 if we couldn't hash the rtx. For registers and memory locations, we look up their cselib_val structure and return its VALUE element. Possible reasons for return 0 are: the object is volatile, or we couldn't find a register or memory location in the table and CREATE is zero. If CREATE is nonzero, table elts are created for regs and mem. N.B. this hash function returns the same hash value for RTXes that differ only in the order of operands, thus it is suitable for comparisons that take commutativity into account. If we wanted to also support associative rules, we'd have to use a different strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) . MEMMODE indicates the mode of an enclosing MEM, and it's only used to compute autoinc values. We used to have a MODE argument for hashing for CONST_INTs, but that didn't make sense, since it caused spurious hash differences between (set (reg:SI 1) (const_int)) (plus:SI (reg:SI 2) (reg:SI 1)) and (plus:SI (reg:SI 2) (const_int)) If the mode is important in any context, it must be checked specifically in a comparison anyway, since relying on hash differences is unsafe.

     ENTRY_VALUEs are function invariant, thus try to avoid
     recursing on argument if ENTRY_VALUE is one of the
     forms emitted by expand_debug_expr, otherwise
     ENTRY_VALUE hash would depend on the current value
     in some register or memory.   
     This is like the general case, except that it only counts
     the integers representing the constant.   
     Assume there is only one rtx object for any given label.   
     We don't hash on the address of the CODE_LABEL to avoid bootstrap
     differences and differences between each stage's debugging dumps.   
       Don't hash on the symbol's address to avoid bootstrap differences.
       Different hash values may cause expressions to be recorded in
       different orders and thus different registers to be used in the
       final assembler.  This also avoids differences in the dump files
       between various stages.   
     We can't compute these without knowing the MEM mode.   
     Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
     like (mem:MEMMODE (plus (reg) (const_int I))).   
         unused  
bool cselib_have_permanent_equivalences ( void  )

Return TRUE if any permanent equivalences have been recorded since the table was last initialized.

void cselib_init ( )

Initialize cselib for one pass. The caller must also call init_alias_analysis.

 (mem:BLK (scratch)) is a special mechanism to conflict with everything,
 see canon_true_dependence.  This is only created once.   
 We preserve reg_values to allow expensive clearing of the whole thing.
 Reallocate it however if it happens to be too large.   
     Some space for newly emit instructions so we don't end up
     reallocating in between passes.   
static void cselib_invalidate_mem ( rtx  )
static
static void cselib_invalidate_mem ( )
static

Invalidate any locations in the table which are changed because of a store to MEM_RTX. If this is called because of a non-const call instruction, MEM_RTX is (mem:BLK const0_rtx).

         MEMs may occur in locations only at the top level; below
         that every MEM or REG is substituted by its VALUE.   
         This one overlaps.   
         We must have a mapping from this MEM's address to the
         value (E).  Remove that, too.   
             Record canonicalized elt.   

References gcc_assert, GET_MODE, hard_regno_nregs, cselib_val_struct::locs, new_elt_list(), new_elt_loc_list(), PRESERVED_VALUE_P, REG_VALUES, and cselib_val_struct::val_rtx.

static void cselib_invalidate_regno ( unsigned  int,
enum  machine_mode 
)
static
static void cselib_invalidate_regno ( )
static

Invalidate any entries in reg_values that overlap REGNO. This is called if REGNO is changing. MODE is the mode of the assignment to REGNO, which is used to determine how many hard registers are being changed. If MODE is VOIDmode, then only REGNO is being changed; this is used when invalidating call clobbered registers across a call.

 If we see pseudos after reload, something is <em>wrong</em>.   
 Determine the range of registers that must be invalidated.  For
 pseudos, only REGNO is affected.  For hard regs, we must take MODE
 into account, and we must also invalidate lower register numbers
 if they contain values that overlap REGNO.   
     Go through all known values for this reg; if it overlaps the range
     we're invalidating, remove the value.   
         We have an overlap.   
             Maintain the invariant that the first entry of
             REG_VALUES, if present, must be the value used to set
             the register, or NULL.  This is also nice because
             then we won't push the same regno onto user_regs
             multiple times.   
         Now, we clear the mapping from value to reg.  It must exist, so
         this code will crash intentionally if it doesn't.   

References cselib_val_struct::addr_list, canon_anti_dependence(), canonical_cselib_val(), cselib_lookup(), gcc_checking_assert, GET_MODE, MEM_P, elt_list::next, elt_loc_list::next, PARAM_VALUE, unchain_one_elt_list(), unchain_one_elt_loc_list(), and XEXP.

void cselib_invalidate_rtx ( )

Invalidate DEST, which is being assigned to or clobbered.

static void cselib_invalidate_rtx_note_stores ( rtx  dest,
const_rtx  ignore,
void *  data 
)
static

A wrapper for cselib_invalidate_rtx to be called via note_stores.

cselib_val* cselib_lookup ( rtx  x,
enum machine_mode  mode,
int  create,
enum machine_mode  memmode 
)

Wrapper for cselib_lookup_1, that logs the lookup result and maintains invariants related with debug insns.

??? Should we return NULL if we're not to create an entry, the found loc is a debug loc and cselib_current_insn is not DEBUG? If so, we should also avoid converting val to non-DEBUG; probably easiest setting cselib_current_insn to NULL before the call above.

Referenced by add_stores(), cselib_invalidate_regno(), cselib_reg_set_mode(), dataflow_set_destroy(), and vt_stack_adjustments().

static cselib_val* cselib_lookup_1 ( rtx  x,
enum machine_mode  mode,
int  create,
enum machine_mode  memmode 
)
static

Look up the rtl expression X in our tables and return the value it has. If CREATE is zero, we return NULL if we don't know the value. Otherwise, we create a new one if possible, using mode MODE if X doesn't have a mode (i.e. because it's a constant). When X is part of an address, MEMMODE should be the mode of the enclosing MEM if we're tracking autoinc expressions.

         Maintain the invariant that the first entry of
         REG_VALUES, if present, must be the value used to set the
         register, or NULL.   
         During var-tracking, try harder to find equivalences
         for SUBREGs.  If a setter sets say a DImode register
         and user uses that register only in SImode, add a lowpart
         subreg location.   
 Can't even create if hashing is not possible.   
 We have to fill the slot before calling cselib_subst_to_values:
 the hash table is inconsistent until we do so, and
 cselib_subst_to_values will need to do lookups.   
cselib_val* cselib_lookup_from_insn ( rtx  x,
enum machine_mode  mode,
int  create,
enum machine_mode  memmode,
rtx  insn 
)

Wrapper for cselib_lookup, that indicates X is in INSN.

static cselib_val* cselib_lookup_mem ( rtx  ,
int   
)
static
static cselib_val* cselib_lookup_mem ( )
static

Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx. If CREATE, make a new one if we haven't seen it before.

Look up the value for the address.

 Find a value that describes a value of our mode at that address.   

References dump_file, elt_loc_list::loc, and print_inline_rtx().

void cselib_preserve_cfa_base_value ( )

Arrange for a REG value to be assumed constant through the whole function, never invalidated and preserved across cselib_reset_table calls.

void cselib_preserve_only_values ( void  )

Clean all non-constant expressions in the hash table, but retain their values.

void cselib_preserve_value ( )

Arrange for a value to not be removed from the hash table even if it becomes useless.

References SP_BASED_VALUE_P, and cselib_val_struct::val_rtx.

Referenced by same_variable_part_p().

bool cselib_preserved_value_p ( )

Test whether a value is preserved.

References REG_P.

Referenced by add_stores().

void cselib_process_insn ( )

Record the effects of INSN.

 Forget everything at a CODE_LABEL, a volatile insn, or a setjmp.   
 If this is a call instruction, forget anything stored in a
 call clobbered register, or, if this is not a const call, in
 memory.   
     Since it is not clear how cselib is going to be used, be
     conservative here and treat looping pure or const functions
     as if they were regular functions.   
 Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
 after we have processed the insn.   
     Flush evertything on setjmp.   
 On setter of the hard frame pointer if frame_pointer_needed,
 invalidate stack_pointer_rtx, so that sp and {,h}fp based
 VALUEs are distinct.   
     remove_useless_values is linear in the hash table size.  Avoid
     quadratic behavior for very large hashtables with very few
     useless elements.   

References cselib_val_struct::addr_list, elt_list::elt, INSN_UID, elt_loc_list::loc, cselib_val_struct::locs, elt_list::next, elt_loc_list::next, cselib_val_struct::next_containing_mem, print_inline_rtx(), elt_loc_list::setting_insn, and cselib_val_struct::val_rtx.

Referenced by record_entry_value(), and reload_cse_regs_1().

static int cselib_record_autoinc_cb ( rtx  mem,
rtx  op,
rtx  dest,
rtx  src,
rtx  srcoff,
void *  arg 
)
static

Callback for for_each_inc_dec. Records in ARG the SETs implied by autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST.

static void cselib_record_set ( rtx  ,
cselib_val ,
cselib_val  
)
static
static void cselib_record_set ( )
static

Record the result of a SET instruction. DEST is being set; the source contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT describes its address.

The register should have been invalidated.

References SET_DEST, and SET_SRC.

static void cselib_record_sets ( rtx  )
static
static void cselib_record_sets ( )
static

Record the effects of any sets and autoincs in INSN.

 Find all sets.   
     Look through the PARALLEL and record the values being
     set, if possible.  Also handle any CLOBBERs.   
 Look up the values that are read.  Do this before invalidating the
 locations that are written.   
     A STRICT_LOW_PART can be ignored; we'll record the equivalence for
     the low part after invalidating any knowledge about larger modes.   
     We don't know how to record anything but REG or MEM.   
 Invalidate all locations written by this insn.  Note that the elts we
 looked up in the previous loop aren't affected, just some of their
 locations may go away.   
 If this is an asm, look for duplicate sets.  This can happen when the
 user uses the same value as an output multiple times.  This is valid
 if the outputs are not actually used thereafter.  Treat this case as
 if the value isn't actually set.  We do this by smashing the destination
 to pc_rtx, so that we won't record the value later.   
 Now enter the equivalences in our tables.   

References find_reg_note(), hard_frame_pointer_rtx, modified_in_p(), NULL_RTX, RTX_FRAME_RELATED_P, and XEXP.

enum machine_mode cselib_reg_set_mode ( )

Return the mode in which a register was last set. If X is not a register, return its mode. If the mode in which the register was set is not known, or the value was already clobbered, return VOIDmode.

References cselib_lookup(), GET_MODE, MEM_P, and REG_P.

void cselib_reset_table ( )

Remove all entries from the hash table, arranging for the next value to be numbered NUM.

Referenced by unchain_one_elt_list().

void cselib_set_value_sp_based ( )

Arrange for a value to be marked as based on stack pointer for find_base_term purposes.

bool cselib_sp_based_value_p ( )

Test whether a value is based on stack pointer for find_base_term purposes.

Referenced by rtx_equal_for_memref_p().

rtx cselib_subst_to_values ( )

Walk rtx X and replace all occurrences of REG and MEM subexpressions with VALUE expressions. This way, it becomes independent of changes to registers and memory. X isn't actually modified; if modifications are needed, new rtl is allocated. However, the return value can share rtl with X. If X is within a MEM, MEMMODE must be the mode of the MEM.

This used to happen for autoincrements, but we deal with them properly now. Remove the if stmt for the next release.

         Assign a value that doesn't match any other.   

References gcc_assert, and NULL.

rtx cselib_subst_to_values_from_insn ( )

Wrapper for cselib_subst_to_values, that indicates X is in INSN.

int discard_useless_locs ( )

For all locations found in X, delete locations that reference useless values (i.e. values without any location). Called through htab_traverse.

References canonical_cselib_val(), dummy_val, first_containing_mem, cselib_val_struct::locs, n_useless_debug_values, cselib_val_struct::next_containing_mem, NULL, and hash_table< Descriptor, Allocator >::traverse().

int discard_useless_values ( )

If X is a value with no locations, remove it from the hashtable.

void dump_cselib_table ( )

Dump to OUT everything in the CSELIB table.

Referenced by record_entry_value().

int dump_cselib_val ( )

Dump the cselib_val *X to FILE *OUT.

static rtx expand_loc ( struct elt_loc_list p,
struct expand_value_data evd,
int  max_depth 
)
static

Search through the possible substitutions in P. We prefer a non reg substitution because this allows us to expand the tree further. If we find, just a reg, take the lowest regno. There may be several non-reg results, we just take the first one because they will all expand to the same place.

     Return these right away to avoid returning stack pointer based
     expressions for frame pointer and vice versa, which is something
     that would confuse DSE.  See the comment in cselib_expand_value_rtx_1
     for more details.   
     Avoid infinite recursion trying to expand a reg into a
     the same reg.   
     Avoid infinite recursion and do not try to expand the
     value.   

References expand_value_data::callback, expand_value_data::callback_arg, cselib_expand_value_rtx_1(), expand_value_data::dummy, NULL, and expand_value_data::regs_active.

bool fp_setter_insn ( )

Return true if INSN in the prologue initializes hard_frame_pointer_rtx.

Don't return true for frame pointer restores in the epilogue.

References cfa_base_preserved_regno, cselib_any_perm_equivs, cselib_clear_table(), cselib_discard_hook, cselib_preserve_constants, hash_table< Descriptor, Allocator >::dispose(), free_alloc_pool(), INVALID_REGNUM, and NULL.

static bool invariant_or_equiv_p ( )
static

Return TRUE if V is a constant, a function invariant or a VALUE equivalence; FALSE otherwise.

 Keep VALUE equivalences around.   
     Although a debug expr may be bound to different expressions,
     we can preserve it as if it was constant, to get unification
     and proper merging within var-tracking.   
     (plus (value V) (const_int C)) is invariant iff V is invariant.   

References hash_table< Descriptor, Allocator >::clear_slot().

static cselib_val* new_cselib_val ( unsigned  int,
enum  machine_mode,
rtx   
)
static
static cselib_val* new_cselib_val ( )
inlinestatic

Create a new value structure for VALUE and initialize it. The mode of the value is MODE.

We use an alloc pool to allocate this RTL construct because it accounts for about 8% of the overall memory usage. We know precisely when we can have VALUE RTXen (when cselib is active) so we don't need to put them in garbage collected memory. ??? Why should a VALUE be an RTX in the first place?

static struct elt_list* new_elt_list ( struct elt_list ,
cselib_val  
)
staticread

Referenced by cselib_invalidate_mem().

static struct elt_list* new_elt_list ( )
staticread

Allocate a struct elt_list and fill in its two elements with the arguments.

static void new_elt_loc_list ( cselib_val ,
rtx   
)
static

Referenced by cselib_invalidate_mem().

static void new_elt_loc_list ( )
inlinestatic

Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc list.

 If we're creating the first loc in a debug insn context, we've
 just created a debug value.  Count it.   
         Reverse the insertion.   
         Bring all locs from LOC to VAL.   
             Adjust values that have LOC as canonical so that VAL
             becomes their canonical.   
         Bring in addr_list into canonical node.   
         Add VAL to the containing_mem list after LOC.  LOC will
         be removed when we notice it doesn't contain any
         MEMs.   
     Chain LOC back to VAL.   
int preserve_constants_and_equivs ( )

Remove from hash table all VALUEs except constants, function invariants and VALUE equivalences.

References cselib_any_perm_equivs, hash_table< Descriptor, Allocator >::empty(), and gcc_checking_assert.

static void promote_debug_loc ( struct elt_loc_list l)
inlinestatic
static void promote_debug_loc ( )
inlinestatic

Promote loc L to a nondebug cselib_current_insn if L is marked as originating from a debug insn, maintaining the debug values count.

References elt_loc_list::next, and pool_free().

int references_value_p ( )

Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we only return true for values which point to a cselib_val whose value element has been set to zero, which implies the cselib_val will be removed.

Referenced by cselib_find_slot().

static void remove_useless_values ( )
static

Clean out useless values (i.e. those which no longer have locations associated with them) from the hash table.

First pass: eliminate locations that reference the value. That in turn can make more values useless.

 Second pass: actually remove the values.   

References cfa_base_preserved_regno, cselib_preserve_constants, elt_loc_list::loc, cselib_val_struct::locs, and REG_P.

static int rtx_equal_for_cselib_1 ( rtx  ,
rtx  ,
enum  machine_mode 
)
static
static int rtx_equal_for_cselib_1 ( )
static

Return nonzero if we can prove that X and Y contain the same value, taking our gathered information into account. MEMMODE holds the mode of the enclosing MEM, if any, as required to deal with autoinc addressing modes. If X and Y are not (known to be) part of addresses, MEMMODE should be VOIDmode.

Avoid infinite recursion.  We know we have the canonical
value, so we can just skip any values in the equivalence
list.   
     Don't recurse if nothing changed.   


 These won't be handled correctly by the code below.   
     ENTRY_VALUEs are function invariant, it is thus undesirable to
     use rtx_equal_for_cselib_1 to compare the operands.   
     We have to compare any autoinc operations in the addresses
     using this MEM's mode.   
         Two vectors must have the same length.   
         And the corresponding elements must match.   
         These are just backpointers, so they don't matter.   
         It is believed that rtx's at this level will never
         contain anything but integers and other rtx's,
         except for within LABEL_REFs and SYMBOL_REFs.   
int rtx_equal_for_cselib_p ( )

Return nonzero if we can prove that X and Y contain the same value, taking our gathered information into account.

static void unchain_one_elt_list ( struct elt_list **  )
static

Referenced by cselib_invalidate_regno().

static void unchain_one_elt_list ( )
inlinestatic

The elt_list at *PL is no longer needed. Unchain it and free its storage.

References cselib_reset_table().

static void unchain_one_elt_loc_list ( struct elt_loc_list **  )
static
static void unchain_one_elt_loc_list ( )
static

Likewise for elt_loc_lists.

References CONSTANT_P, GET_CODE, elt_loc_list::loc, and cselib_val_struct::locs.

static void unchain_one_value ( cselib_val )
static
static void unchain_one_value ( )
static

Likewise for cselib_vals. This also frees the addr_list associated with V.

static rtx wrap_constant ( )
static

We need to pass down the mode of constants through the hash table functions. For that purpose, wrap them in a CONST of the appropriate mode.


Variable Documentation

rtx callmem
static

We pass this to cselib_invalidate_mem to invalidate all of memory for a non-const call instruction.

unsigned int cfa_base_preserved_regno = INVALID_REGNUM
static
cselib_val* cfa_base_preserved_val
static

If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx that is constant through the whole function and should never be eliminated.

bool cselib_any_perm_equivs
static
rtx cselib_current_insn
static

This is a global so we don't have to pass this through every function. It is used in new_elt_loc_list to set SETTING_INSN.

void(* cselib_discard_hook)(cselib_val *)

If nonnull, cselib will call this function before freeing useless VALUEs. A VALUE is deemed useless if its "locs" field is null.

Referenced by fp_setter_insn().

hash_table<cselib_hasher> cselib_hash_table
static

A table that enables us to look up elts by their value.

unsigned int cselib_nregs
static

The number of registers we had when the varrays were last resized.

bool cselib_preserve_constants
static
bool cselib_record_memory
static
void(* cselib_record_sets_hook)(rtx insn, struct cselib_set *sets, int n_sets)

If nonnull, cselib will call this function before recording sets or even clobbering outputs of INSN. All the recorded sets will be represented in the array sets[n_sets]. new_val_min can be used to tell whether values present in sets are introduced by this instruction.

alloc_pool cselib_val_pool
static
cselib_val dummy_val
static

Used as stop element of the containing_mem list so we can check presence in the list by checking the next pointer.

Referenced by discard_useless_locs().

alloc_pool elt_list_pool
static
alloc_pool elt_loc_list_pool
static
enum machine_mode find_slot_memmode
static

See the documentation of cselib_find_slot below.

cselib_val* first_containing_mem = &dummy_val
static

Used to list all values that contain memory reference. May or may not contain the useless values - the list is compacted each time memory is invalidated.

Referenced by discard_useless_locs().

unsigned int max_value_regs
static

The largest number of hard regs used by any entry added to the REG_VALUES table. Cleared on each cselib_clear_table() invocation.

int n_debug_values
static

Count values whose locs have been taken exclusively from debug insns for the entire life of the value.

unsigned int n_used_regs
static
int n_useless_debug_values
static

Referenced by discard_useless_locs().

int n_useless_values
static

Count values without known locations, or with only locations that wouldn't have been known except for debug insns. Whenever this grows too big, we remove these useless values from the table.

Counting values with only debug values is a bit tricky. We don't want to increment n_useless_values when we create a value for a debug insn, for this would get n_useless_values out of sync, but we want increment it if all locs in the list that were ever referenced in nondebug insns are removed from the list.

In the general case, once we do that, we'd have to stop accepting nondebug expressions in the loc list, to avoid having two values equivalent that, without debug insns, would have been made into separate values. However, because debug insns never introduce equivalences themselves (no assignments), the only means for growing loc lists is through nondebug assignments. If the locs also happen to be referenced in debug insns, it will work just fine.

A consequence of this is that there's at most one debug-only loc in each loc list. If we keep it in the first entry, testing whether we have a debug-only loc list takes O(1).

Furthermore, since any additional entry in a loc list containing a debug loc would have to come from an assignment (nondebug) that references both the initial debug loc and the newly-equivalent loc, the initial debug loc would be promoted to a nondebug loc, and the loc list would not contain debug locs any more.

So the only case we have to be careful with in order to keep n_useless_values in sync between debug and nondebug compilations is to avoid incrementing n_useless_values when removing the single loc from a value that turns out to not appear outside debug values. We increment n_useless_debug_values instead, and leave such values alone until, for other reasons, we garbage-collect useless values.

unsigned int next_uid
static

The unique id that the next create value will take.

struct elt_list** reg_values
static

This table maps from register number to values. It does not contain pointers to cselib_val structures, but rather elt_lists. The purpose is to be able to refer to the same register in different modes. The first element of the list defines the mode in which the register was set; if the mode is unknown or the value is no longer valid in that mode, ELT will be NULL for the first element.

unsigned int reg_values_size
static
unsigned int* used_regs
static

Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used in cselib_clear_table() for fast emptying.

Referenced by saved_hard_reg_compare_func().

alloc_pool value_pool
static
int values_became_useless
static

Set by discard_useless_locs if it deleted the last location of any value.