GCC Middle and Back End API Reference
sese.h
Go to the documentation of this file.
1 /* Single entry single exit control flow regions.
2  Copyright (C) 2008-2013 Free Software Foundation, Inc.
3  Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4  Sebastian Pop <sebastian.pop@amd.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21 
22 #ifndef GCC_SESE_H
23 #define GCC_SESE_H
24 
25 /* A Single Entry, Single Exit region is a part of the CFG delimited
26  by two edges. */
27 typedef struct sese_s
28 {
29  /* Single ENTRY and single EXIT from the SESE region. */
30  edge entry, exit;
31 
32  /* Parameters used within the SCOP. */
34 
35  /* Loops completely contained in the SCOP. */
36  bitmap loops;
38 
39  /* Are we allowed to add more params? This is for debugging purpose. We
40  can only add new params before generating the bb domains, otherwise they
41  become invalid. */
42  bool add_params;
43 } *sese;
44 
45 #define SESE_ENTRY(S) (S->entry)
46 #define SESE_ENTRY_BB(S) (S->entry->dest)
47 #define SESE_EXIT(S) (S->exit)
48 #define SESE_EXIT_BB(S) (S->exit->dest)
49 #define SESE_PARAMS(S) (S->params)
50 #define SESE_LOOPS(S) (S->loops)
51 #define SESE_LOOP_NEST(S) (S->loop_nest)
52 #define SESE_ADD_PARAMS(S) (S->add_params)
53 
54 extern sese new_sese (edge, edge);
55 extern void free_sese (sese);
57 extern void build_sese_loop_nests (sese);
59  vec<tree> , bool *);
62 
63 /* Check that SESE contains LOOP. */
64 
65 static inline bool
67 {
68  return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
69 }
70 
71 /* The number of parameters in REGION. */
72 
73 static inline unsigned
75 {
76  return SESE_PARAMS (region).length ();
77 }
78 
79 /* Checks whether BB is contained in the region delimited by ENTRY and
80  EXIT blocks. */
81 
82 static inline bool
84 {
85 #ifdef ENABLE_CHECKING
86  {
87  edge e;
88  edge_iterator ei;
89 
90  /* Check that there are no edges coming in the region: all the
91  predecessors of EXIT are dominated by ENTRY. */
92  FOR_EACH_EDGE (e, ei, exit->preds)
93  dominated_by_p (CDI_DOMINATORS, e->src, entry);
94  }
95 #endif
96 
97  return dominated_by_p (CDI_DOMINATORS, bb, entry)
98  && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
99  && !dominated_by_p (CDI_DOMINATORS, entry, exit));
100 }
101 
102 /* Checks whether BB is contained in the region delimited by ENTRY and
103  EXIT blocks. */
104 
105 static inline bool
107 {
108  basic_block entry = SESE_ENTRY_BB (region);
109  basic_block exit = SESE_EXIT_BB (region);
110 
111  return bb_in_region (bb, entry, exit);
112 }
113 
114 /* Returns true when STMT is defined in REGION. */
115 
116 static inline bool
118 {
119  basic_block bb = gimple_bb (stmt);
120  return bb && bb_in_sese_p (bb, region);
121 }
122 
123 /* Returns true when NAME is defined in REGION. */
124 
125 static inline bool
126 defined_in_sese_p (tree name, sese region)
127 {
128  gimple stmt = SSA_NAME_DEF_STMT (name);
129  return stmt_in_sese_p (stmt, region);
130 }
131 
132 /* Returns true when LOOP is in REGION. */
133 
134 static inline bool
135 loop_in_sese_p (struct loop *loop, sese region)
136 {
137  return (bb_in_sese_p (loop->header, region)
138  && bb_in_sese_p (loop->latch, region));
139 }
140 
141 /* Returns the loop depth of LOOP in REGION. The loop depth
142  is the same as the normal loop depth, but limited by a region.
143 
144  Example:
145 
146  loop_0
147  loop_1
148  {
149  S0
150  <- region start
151  S1
152 
153  loop_2
154  S2
155 
156  S3
157  <- region end
158  }
159 
160  loop_0 does not exist in the region -> invalid
161  loop_1 exists, but is not completely contained in the region -> depth 0
162  loop_2 is completely contained -> depth 1 */
163 
164 static inline unsigned int
165 sese_loop_depth (sese region, loop_p loop)
166 {
167  unsigned int depth = 0;
168 
169  gcc_assert ((!loop_in_sese_p (loop, region)
170  && (SESE_ENTRY_BB (region)->loop_father == loop
171  || SESE_EXIT (region)->src->loop_father == loop))
172  || loop_in_sese_p (loop, region));
173 
174  while (loop_in_sese_p (loop, region))
175  {
176  depth++;
177  loop = loop_outer (loop);
178  }
179 
180  return depth;
181 }
182 
183 /* Splits BB to make a single entry single exit region. */
184 
185 static inline sese
187 {
188  edge entry, exit;
189 
190  if (single_pred_p (bb))
191  entry = single_pred_edge (bb);
192  else
193  {
194  entry = split_block_after_labels (bb);
195  bb = single_succ (bb);
196  }
197 
198  if (single_succ_p (bb))
199  exit = single_succ_edge (bb);
200  else
201  {
203  gsi_prev (&gsi);
204  exit = split_block (bb, gsi_stmt (gsi));
205  }
206 
207  return new_sese (entry, exit);
208 }
209 
210 /* Returns the block preceding the entry of a SESE. */
211 
212 static inline basic_block
213 block_before_sese (sese sese)
214 {
215  return SESE_ENTRY (sese)->src;
216 }
217 
218 
219 
220 /* A single entry single exit specialized for conditions. */
221 
222 typedef struct ifsese_s {
223  sese region;
224  sese true_region;
225  sese false_region;
226 } *ifsese;
227 
228 extern void if_region_set_false_region (ifsese, sese);
229 extern ifsese move_sese_in_condition (sese);
232 extern void set_ifsese_condition (ifsese, tree);
233 
234 static inline edge
235 if_region_entry (ifsese if_region)
236 {
237  return SESE_ENTRY (if_region->region);
238 }
239 
240 static inline edge
242 {
243  return SESE_EXIT (if_region->region);
244 }
245 
246 static inline basic_block
248 {
249  return if_region_entry (if_region)->dest;
250 }
251 
252 /* Structure containing the mapping between the old names and the new
253  names used after block copy in the new loop context. */
254 typedef struct rename_map_elt_s
255 {
256  tree old_name, expr;
257 } *rename_map_elt;
258 
260 extern hashval_t rename_map_elt_info (const void *);
261 extern int eq_rename_map_elts (const void *, const void *);
262 
263 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
264 
265 static inline rename_map_elt
266 new_rename_map_elt (tree old_name, tree expr)
267 {
268  rename_map_elt res;
269 
270  res = XNEW (struct rename_map_elt_s);
271  res->old_name = old_name;
272  res->expr = expr;
274  return res;
275 }
276 
277 /* Free and compute again all the dominators information. */
278 
279 static inline void
281 {
285 }
287 typedef struct gimple_bb
288 {
289  basic_block bb;
290  struct poly_bb *pbb;
291 
292  /* Lists containing the restrictions of the conditional statements
293  dominating this bb. This bb can only be executed, if all conditions
294  are true.
295 
296  Example:
297 
298  for (i = 0; i <= 20; i++)
299  {
300  A
302  if (2i <= 8)
303  B
304  }
305 
306  So for B there is an additional condition (2i <= 8).
307 
308  List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
309  corresponding element in CONDITION_CASES is not NULL_TREE. For a
310  SWITCH_EXPR the corresponding element in CONDITION_CASES is a
311  CASE_LABEL_EXPR. */
315 } *gimple_bb_p;
316 
317 #define GBB_BB(GBB) (GBB)->bb
318 #define GBB_PBB(GBB) (GBB)->pbb
319 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
320 #define GBB_CONDITIONS(GBB) (GBB)->conditions
321 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
322 
323 /* Return the innermost loop that contains the basic block GBB. */
324 
325 static inline struct loop *
326 gbb_loop (struct gimple_bb *gbb)
327 {
328  return GBB_BB (gbb)->loop_father;
329 }
330 
331 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
332  If there is no corresponding gimple loop, we return NULL. */
333 
334 static inline loop_p
335 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
336 {
337  loop_p loop = gbb_loop (gbb);
338  int depth = sese_loop_depth (region, loop);
339 
340  while (--depth > index)
341  loop = loop_outer (loop);
342 
343  gcc_assert (sese_contains_loop (region, loop));
344 
345  return loop;
346 }
347 
348 /* The number of common loops in REGION for GBB1 and GBB2. */
350 static inline int
351 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
352 {
353  loop_p l1 = gbb_loop (gbb1);
354  loop_p l2 = gbb_loop (gbb2);
355  loop_p common = find_common_loop (l1, l2);
356 
357  return sese_loop_depth (region, common);
358 }
360 /* Return true when DEF can be analyzed in REGION by the scalar
361  evolution analyzer. */
362 
363 static inline bool
364 scev_analyzable_p (tree def, sese region)
365 {
366  loop_p loop;
367  tree scev;
368  tree type = TREE_TYPE (def);
369 
370  /* When Graphite generates code for a scev, the code generator
371  expresses the scev in function of a single induction variable.
372  This is unsafe for floating point computations, as it may replace
373  a floating point sum reduction with a multiplication. The
374  following test returns false for non integer types to avoid such
375  problems. */
376  if (!INTEGRAL_TYPE_P (type)
377  && !POINTER_TYPE_P (type))
378  return false;
379 
380  loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
381  scev = scalar_evolution_in_region (region, loop, def);
382 
383  return !chrec_contains_undetermined (scev)
384  && (TREE_CODE (scev) != SSA_NAME
385  || !defined_in_sese_p (scev, region))
388 }
389 
390 #endif