GCC Middle and Back End API Reference
sel-sched-ir.h
Go to the documentation of this file.
1 /* Instruction scheduling pass. This file contains definitions used
2  internally in the scheduler.
3  Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20 
21 #ifndef GCC_SEL_SCHED_IR_H
22 #define GCC_SEL_SCHED_IR_H
23 
24 /* For state_t. */
25 #include "insn-attr.h"
26 #include "regset.h"
27 #include "basic-block.h"
28 /* For reg_note. */
29 #include "rtl.h"
30 #include "ggc.h"
31 #include "bitmap.h"
32 #include "sched-int.h"
33 #include "cfgloop.h"
34 
35 /* tc_t is a short for target context. This is a state of the target
36  backend. */
37 typedef void *tc_t;
38 
39 /* List data types used for av sets, fences, paths, and boundaries. */
40 
41 /* Forward declarations for types that are part of some list nodes. */
42 struct _list_node;
43 
44 /* List backend. */
45 typedef struct _list_node *_list_t;
46 #define _LIST_NEXT(L) ((L)->next)
47 
48 /* Instruction data that is part of vinsn type. */
49 struct idata_def;
50 typedef struct idata_def *idata_t;
51 
52 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
53 struct vinsn_def;
54 typedef struct vinsn_def *vinsn_t;
55 
56 /* RTX list.
57  This type is the backend for ilist. */
58 typedef _list_t _xlist_t;
59 #define _XLIST_X(L) ((L)->u.x)
60 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
61 
62 /* Instruction. */
63 typedef rtx insn_t;
64 
65 /* List of insns. */
66 typedef _xlist_t ilist_t;
67 #define ILIST_INSN(L) (_XLIST_X (L))
68 #define ILIST_NEXT(L) (_XLIST_NEXT (L))
69 
70 /* This lists possible transformations that done locally, i.e. in
71  moveup_expr. */
73  {
76  };
77 
78 /* This struct is used to record the history of expression's
79  transformations. */
80 struct expr_history_def_1
81 {
82  /* UID of the insn. */
83  unsigned uid;
84 
85  /* How the expression looked like. */
86  vinsn_t old_expr_vinsn;
87 
88  /* How the expression looks after the transformation. */
89  vinsn_t new_expr_vinsn;
90 
91  /* And its speculative status. */
92  ds_t spec_ds;
93 
94  /* Type of the transformation. */
96 };
97 
99 
100 
101 /* Expression information. */
102 struct _expr
103 {
104  /* Insn description. */
105  vinsn_t vinsn;
107  /* SPEC is the degree of speculativeness.
108  FIXME: now spec is increased when an rhs is moved through a
109  conditional, thus showing only control speculativeness. In the
110  future we'd like to count data spec separately to allow a better
111  control on scheduling. */
112  int spec;
113 
114  /* Degree of speculativeness measured as probability of executing
115  instruction's original basic block given relative to
116  the current scheduling point. */
118 
119  /* A priority of this expression. */
120  int priority;
121 
122  /* A priority adjustment of this expression. */
123  int priority_adj;
124 
125  /* Number of times the insn was scheduled. */
127 
128  /* A basic block index this was originated from. Zero when there is
129  more than one originator. */
130  int orig_bb_index;
131 
132  /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
133  point. */
135 
136  /* SPEC_TO_CHECK_DS hold speculation types that should be checked
137  (used only during move_op ()). */
139 
140  /* Cycle on which original insn was scheduled. Zero when it has not yet
141  been scheduled or more than one originator. */
142  int orig_sched_cycle;
143 
144  /* This vector contains the history of insn's transformations. */
146 
147  /* True (1) when original target (register or memory) of this instruction
148  is available for scheduling, false otherwise. -1 means we're not sure;
149  please run find_used_regs to clarify. */
150  signed char target_available;
151 
152  /* True when this expression needs a speculation check to be scheduled.
153  This is used during find_used_regs. */
154  BOOL_BITFIELD needs_spec_check_p : 1;
155 
156  /* True when the expression was substituted. Used for statistical
157  purposes. */
158  BOOL_BITFIELD was_substituted : 1;
159 
160  /* True when the expression was renamed. */
161  BOOL_BITFIELD was_renamed : 1;
163  /* True when expression can't be moved. */
164  BOOL_BITFIELD cant_move : 1;
165 };
166 
167 typedef struct _expr expr_def;
168 typedef expr_def *expr_t;
169 
170 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
171 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
172 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
173 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
174 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
175 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
176 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
177 
178 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
179 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
180 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
181 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
182 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
183 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
184 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
185 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
186 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
187 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
188 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
189 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
190 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
191 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
192 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
193 
194 /* Insn definition for list of original insns in find_used_regs. */
195 struct _def
196 {
198 
199  /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
200  rhs from two different places, but only one of the code motion paths
201  crosses a call, we can't use any of the call_used_regs, no matter which
202  path or whether all paths crosses a call. Thus we should move CROSSES_CALL
203  to static params. */
205 };
206 typedef struct _def *def_t;
207 
208 
209 /* Availability sets are sets of expressions we're scheduling. */
210 typedef _list_t av_set_t;
211 #define _AV_SET_EXPR(L) (&(L)->u.expr)
212 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
213 
214 
215 /* Boundary of the current fence group. */
216 struct _bnd
217 {
218  /* The actual boundary instruction. */
219  insn_t to;
220 
221  /* Its path to the fence. */
222  ilist_t ptr;
223 
224  /* Availability set at the boundary. */
225  av_set_t av;
226 
227  /* This set moved to the fence. */
228  av_set_t av1;
229 
230  /* Deps context at this boundary. As long as we have one boundary per fence,
231  this is just a pointer to the same deps context as in the corresponding
232  fence. */
233  deps_t dc;
234 };
235 typedef struct _bnd *bnd_t;
236 #define BND_TO(B) ((B)->to)
237 
238 /* PTR stands not for pointer as you might think, but as a Path To Root of the
239  current instruction group from boundary B. */
240 #define BND_PTR(B) ((B)->ptr)
241 #define BND_AV(B) ((B)->av)
242 #define BND_AV1(B) ((B)->av1)
243 #define BND_DC(B) ((B)->dc)
245 /* List of boundaries. */
246 typedef _list_t blist_t;
247 #define BLIST_BND(L) (&(L)->u.bnd)
248 #define BLIST_NEXT(L) (_LIST_NEXT (L))
250 
251 /* Fence information. A fence represents current scheduling point and also
252  blocks code motion through it when pipelining. */
253 struct _fence
254 {
255  /* Insn before which we gather an instruction group.*/
257 
258  /* Modeled state of the processor pipeline. */
259  state_t state;
261  /* Current cycle that is being scheduled on this fence. */
262  int cycle;
263 
264  /* Number of insns that were scheduled on the current cycle.
265  This information has to be local to a fence. */
266  int cycle_issued_insns;
267 
268  /* At the end of fill_insns () this field holds the list of the instructions
269  that are inner boundaries of the scheduled parallel group. */
270  ilist_t bnds;
271 
272  /* Deps context at this fence. It is used to model dependencies at the
273  fence so that insn ticks can be properly evaluated. */
274  deps_t dc;
275 
276  /* Target context at this fence. Used to save and load any local target
277  scheduling information when changing fences. */
279 
280  /* A vector of insns that are scheduled but not yet completed. */
282 
283  /* A vector indexed by UIDs that caches the earliest cycle on which
284  an insn can be scheduled on this fence. */
285  int *ready_ticks;
286 
287  /* Its size. */
288  int ready_ticks_size;
289 
290  /* Insn, which has been scheduled last on this fence. */
292 
293  /* The last value of can_issue_more variable on this fence. */
294  int issue_more;
295 
296  /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
297  rtx sched_next;
298 
299  /* True if fill_insns processed this fence. */
300  BOOL_BITFIELD processed_p : 1;
302  /* True if fill_insns actually scheduled something on this fence. */
303  BOOL_BITFIELD scheduled_p : 1;
304 
305  /* True when the next insn scheduled here would start a cycle. */
306  BOOL_BITFIELD starts_cycle_p : 1;
307 
308  /* True when the next insn scheduled here would be scheduled after a stall. */
309  BOOL_BITFIELD after_stall_p : 1;
310 };
311 typedef struct _fence *fence_t;
312 
313 #define FENCE_INSN(F) ((F)->insn)
314 #define FENCE_STATE(F) ((F)->state)
315 #define FENCE_BNDS(F) ((F)->bnds)
316 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
317 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
318 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
319 #define FENCE_CYCLE(F) ((F)->cycle)
320 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
321 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
322 #define FENCE_DC(F) ((F)->dc)
323 #define FENCE_TC(F) ((F)->tc)
324 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
325 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
326 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
327 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
328 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
329 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
330 
331 /* List of fences. */
332 typedef _list_t flist_t;
333 #define FLIST_FENCE(L) (&(L)->u.fence)
334 #define FLIST_NEXT(L) (_LIST_NEXT (L))
335 
336 /* List of fences with pointer to the tail node. */
338 {
339  flist_t head;
340  flist_t *tailp;
341 };
343 typedef struct flist_tail_def *flist_tail_t;
344 #define FLIST_TAIL_HEAD(L) ((L)->head)
345 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
347 /* List node information. A list node can be any of the types above. */
348 struct _list_node
349 {
350  _list_t next;
351 
352  union
353  {
355  struct _bnd bnd;
356  expr_def expr;
357  struct _fence fence;
358  struct _def def;
359  void *data;
360  } u;
361 };
362 
363 
364 /* _list_t functions.
365  All of _*list_* functions are used through accessor macros, thus
366  we can't move them in sel-sched-ir.c. */
368 
369 static inline _list_t
371 {
372  return (_list_t) pool_alloc (sched_lists_pool);
373 }
375 static inline void
376 _list_add (_list_t *lp)
377 {
378  _list_t l = _list_alloc ();
379 
380  _LIST_NEXT (l) = *lp;
381  *lp = l;
382 }
383 
384 static inline void
385 _list_remove_nofree (_list_t *lp)
386 {
387  _list_t n = *lp;
388 
389  *lp = _LIST_NEXT (n);
390 }
391 
392 static inline void
393 _list_remove (_list_t *lp)
394 {
395  _list_t n = *lp;
396 
397  *lp = _LIST_NEXT (n);
398  pool_free (sched_lists_pool, n);
399 }
400 
401 static inline void
402 _list_clear (_list_t *l)
403 {
404  while (*l)
405  _list_remove (l);
406 }
407 
408 
409 /* List iterator backend. */
410 typedef struct
411 {
412  /* The list we're iterating. */
413  _list_t *lp;
414 
415  /* True when this iterator supprts removing. */
416  bool can_remove_p;
417 
418  /* True when we've actually removed something. */
419  bool removed_p;
421 
422 static inline void
423 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
424 {
425  ip->lp = lp;
426  ip->can_remove_p = can_remove_p;
427  ip->removed_p = false;
428 }
429 
430 static inline void
432 {
433  if (!ip->removed_p)
434  ip->lp = &_LIST_NEXT (*ip->lp);
435  else
436  ip->removed_p = false;
437 }
438 
439 static inline void
441 {
442  gcc_assert (!ip->removed_p && ip->can_remove_p);
443  _list_remove (ip->lp);
444  ip->removed_p = true;
445 }
446 
447 static inline void
449 {
450  gcc_assert (!ip->removed_p && ip->can_remove_p);
451  _list_remove_nofree (ip->lp);
452  ip->removed_p = true;
453 }
455 /* General macros to traverse a list. FOR_EACH_* interfaces are
456  implemented using these. */
457 #define _FOR_EACH(TYPE, ELEM, I, L) \
458  for (_list_iter_start (&(I), &(L), false); \
459  _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
460  _list_iter_next (&(I)))
461 
462 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
463  for (_list_iter_start (&(I), (LP), true); \
464  _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
465  _list_iter_next (&(I)))
466 
467 
468 /* _xlist_t functions. */
469 
470 static inline void
472 {
473  _list_add (lp);
474  _XLIST_X (*lp) = x;
475 }
476 
477 #define _xlist_remove(LP) (_list_remove (LP))
478 #define _xlist_clear(LP) (_list_clear (LP))
479 
480 static inline bool
482 {
483  while (l)
484  {
485  if (_XLIST_X (l) == x)
486  return true;
487  l = _XLIST_NEXT (l);
488  }
489 
490  return false;
491 }
493 /* Used through _FOR_EACH. */
494 static inline bool
496 {
497  if (l)
498  {
499  *xp = _XLIST_X (l);
500  return true;
501  }
502 
503  return false;
504 }
505 
506 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
507 
509 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
510 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
511 
512 
513 /* ilist_t functions. Instruction lists are simply RTX lists. */
514 
515 #define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
516 #define ilist_remove(LP) (_xlist_remove (LP))
517 #define ilist_clear(LP) (_xlist_clear (LP))
518 #define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
519 #define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
520 
521 typedef _xlist_iterator ilist_iterator;
522 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
523 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
524 
525 
526 /* Av set iterators. */
528 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
529 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
530 
531 inline bool
533 {
534  if (av)
535  {
536  *exprp = _AV_SET_EXPR (av);
537  return true;
538  }
539 
540  return false;
541 }
542 
543 
544 /* Def list iterators. */
545 typedef _list_t def_list_t;
547 
548 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
549 #define DEF_LIST_DEF(L) (&(L)->u.def)
550 
551 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
552 
553 static inline bool
554 _list_iter_cond_def (def_list_t def_list, def_t *def)
555 {
556  if (def_list)
557  {
558  *def = DEF_LIST_DEF (def_list);
559  return true;
560  }
561 
562  return false;
563 }
564 
565 
566 /* InstructionData. Contains information about insn pattern. */
567 struct idata_def
568 {
569  /* Type of the insn.
570  o CALL_INSN - Call insn
571  o JUMP_INSN - Jump insn
572  o INSN - INSN that cannot be cloned
573  o USE - INSN that can be cloned
574  o SET - INSN that can be cloned and separable into lhs and rhs
575  o PC - simplejump. Insns that simply redirect control flow should not
576  have any dependencies. Sched-deps.c, though, might consider them as
577  producers or consumers of certain registers. To avoid that we handle
578  dependency for simple jumps ourselves. */
579  int type;
580 
581  /* If insn is a SET, this is its left hand side. */
582  rtx lhs;
583 
584  /* If insn is a SET, this is its right hand side. */
585  rtx rhs;
586 
587  /* Registers that are set/used by this insn. This info is now gathered
588  via sched-deps.c. The downside of this is that we also use live info
589  from flow that is accumulated in the basic blocks. These two infos
590  can be slightly inconsistent, hence in the beginning we make a pass
591  through CFG and calculating the conservative solution for the info in
592  basic blocks. When this scheduler will be switched to use dataflow,
593  this can be unified as df gives us both per basic block and per
594  instruction info. Actually, we don't do that pass and just hope
595  for the best. */
597 
599 
601 };
602 
603 #define IDATA_TYPE(ID) ((ID)->type)
604 #define IDATA_LHS(ID) ((ID)->lhs)
605 #define IDATA_RHS(ID) ((ID)->rhs)
606 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
607 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
608 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
609 
610 /* Type to represent all needed info to emit an insn.
611  This is a virtual equivalent of the insn.
612  Every insn in the stream has an associated vinsn. This is used
613  to reduce memory consumption basing on the fact that many insns
614  don't change through the scheduler.
615 
616  vinsn can be either normal or unique.
617  * Normal vinsn is the one, that can be cloned multiple times and typically
618  corresponds to normal instruction.
619 
620  * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
621  unusual stuff. Such a vinsn is described by its INSN field, which is a
622  reference to the original instruction. */
623 struct vinsn_def
624 {
625  /* Associated insn. */
626  rtx insn_rtx;
627 
628  /* Its description. */
629  struct idata_def id;
630 
631  /* Hash of vinsn. It is computed either from pattern or from rhs using
632  hash_rtx. It is not placed in ID for faster compares. */
633  unsigned hash;
634 
635  /* Hash of the insn_rtx pattern. */
636  unsigned hash_rtx;
637 
638  /* Smart pointer counter. */
639  int count;
640 
641  /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
642  int cost;
643 
644  /* Mark insns that may trap so we don't move them through jumps. */
645  bool may_trap_p;
646 };
648 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
649 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
650 
651 #define VINSN_ID(VI) (&((VI)->id))
652 #define VINSN_HASH(VI) ((VI)->hash)
653 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
654 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
655 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
656 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
657 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
658 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
659 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
660 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
661 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
662 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
663 #define VINSN_COUNT(VI) ((VI)->count)
664 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
665 
666 
667 /* An entry of the hashtable describing transformations happened when
668  moving up through an insn. */
669 struct transformed_insns
670 {
671  /* Previous vinsn. Used to find the proper element. */
672  vinsn_t vinsn_old;
673 
674  /* A new vinsn. */
675  vinsn_t vinsn_new;
676 
677  /* Speculative status. */
678  ds_t ds;
679 
680  /* Type of transformation happened. */
681  enum local_trans_type type;
683  /* Whether a conflict on the target register happened. */
684  BOOL_BITFIELD was_target_conflict : 1;
685 
686  /* Whether a check was needed. */
687  BOOL_BITFIELD needs_check : 1;
688 };
689 
690 /* Indexed by INSN_LUID, the collection of all data associated with
691  a single instruction that is in the stream. */
692 struct _sel_insn_data
693 {
694  /* The expression that contains vinsn for this insn and some
695  flow-sensitive data like priority. */
696  expr_def expr;
697 
698  /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
699  int ws_level;
700 
701  /* A number that helps in defining a traversing order for a region. */
702  int seqno;
703 
704  /* A liveness data computed above this insn. */
705  regset live;
706 
707  /* An INSN_UID bit is set when deps analysis result is already known. */
709 
710  /* An INSN_UID bit is set when a hard dep was found, not set when
711  no dependence is found. This is meaningful only when the analyzed_deps
712  bitmap has its bit set. */
714 
715  /* An INSN_UID bit is set when this is a bookkeeping insn generated from
716  a parent with this uid. If a parent is a bookkeeping copy, all its
717  originators are transitively included in this set. */
719 
720  /* A hashtable caching the result of insn transformations through this one. */
722 
723  /* A context incapsulating this insn. */
724  struct deps_desc deps_context;
726  /* This field is initialized at the beginning of scheduling and is used
727  to handle sched group instructions. If it is non-null, then it points
728  to the instruction, which should be forced to schedule next. Such
729  instructions are unique. */
731 
732  /* Cycle at which insn was scheduled. It is greater than zero if insn was
733  scheduled. This is used for bundling. */
734  int sched_cycle;
735 
736  /* Cycle at which insn's data will be fully ready. */
738 
739  /* Speculations that are being checked by this insn. */
741 
742  /* Whether the live set valid or not. */
743  BOOL_BITFIELD live_valid_p : 1;
744  /* Insn is an ASM. */
745  BOOL_BITFIELD asm_p : 1;
746 
747  /* True when an insn is scheduled after we've determined that a stall is
748  required.
749  This is used when emulating the Haifa scheduler for bundling. */
750  BOOL_BITFIELD after_stall_p : 1;
751 };
752 
753 typedef struct _sel_insn_data sel_insn_data_def;
755 
757 
758 /* Accessor macros for s_i_d. */
759 #define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
760 #define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
761 
763 
764 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
765 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
766 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
767 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
768 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
769 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
770 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
771 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
772 
773 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
774 #define INSN_LIVE(INSN) (SID (INSN)->live)
775 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
776 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
777 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
778 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
779 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
780 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
781 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
782 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
783 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
784 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
785 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
786 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
787 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
788 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
789 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
790 
791 /* A global level shows whether an insn is valid or not. */
792 extern int global_level;
793 
794 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
795 
796 extern av_set_t get_av_set (insn_t);
797 extern int get_av_level (insn_t);
798 
799 #define AV_SET(INSN) (get_av_set (INSN))
800 #define AV_LEVEL(INSN) (get_av_level (INSN))
801 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
802 
803 /* A list of fences currently in the works. */
804 extern flist_t fences;
806 /* A NOP pattern used as a placeholder for real insns. */
807 extern rtx nop_pattern;
808 
809 /* An insn that 'contained' in EXIT block. */
810 extern rtx exit_insn;
811 
812 /* Provide a separate luid for the insn. */
813 #define INSN_INIT_TODO_LUID (1)
814 
815 /* Initialize s_s_i_d. */
816 #define INSN_INIT_TODO_SSID (2)
817 
818 /* Initialize data for simplejump. */
819 #define INSN_INIT_TODO_SIMPLEJUMP (4)
820 
821 /* Return true if INSN is a local NOP. The nop is local in the sense that
822  it was emitted by the scheduler as a temporary insn and will soon be
823  deleted. These nops are identified by their pattern. */
824 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
826 /* Return true if INSN is linked into instruction stream.
827  NB: It is impossible for INSN to have one field null and the other not
828  null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
829  == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
830 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
831 
832 /* Return true if INSN is in current fence. */
833 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
834 
835 /* Marks loop as being considered for pipelining. */
836 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
837 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
838 
839 /* Saved loop preheader to transfer when scheduling the loop. */
840 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
841  ? NULL \
842  : ((vec<basic_block> *) (LOOP)->aux))
843 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
844  = (BLOCKS != NULL \
845  ? BLOCKS \
846  : (LOOP)->aux))
847 
849 
850 
851 /* A variable to track which part of rtx we are scanning in
852  sched-deps.c: sched_analyze_insn (). */
854  {
855  DEPS_IN_INSN,
856  DEPS_IN_LHS,
859  };
861 
862 
863 /* Per basic block data for the whole CFG. */
864 typedef struct
865 {
866  /* For each bb header this field contains a set of live registers.
867  For all other insns this field has a NULL.
868  We also need to know LV sets for the instructions, that are immediately
869  after the border of the region. */
870  regset lv_set;
871 
872  /* Status of LV_SET.
873  true - block has usable LV_SET.
874  false - block's LV_SET should be recomputed. */
875  bool lv_set_valid_p;
877 
879 
880 
881 /* Per basic block data. This array is indexed by basic block index. */
883 
884 extern void sel_extend_global_bb_info (void);
885 extern void sel_finish_global_bb_info (void);
886 
887 /* Get data for BB. */
888 #define SEL_GLOBAL_BB_INFO(BB) \
889  (&sel_global_bb_info[(BB)->index])
890 
891 /* Access macros. */
892 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
893 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
894 
895 /* Per basic block data for the region. */
896 typedef struct
897 {
898  /* This insn stream is constructed in such a way that it should be
899  traversed by PREV_INSN field - (*not* NEXT_INSN). */
900  rtx note_list;
901 
902  /* Cached availability set at the beginning of a block.
903  See also AV_LEVEL () for conditions when this av_set can be used. */
904  av_set_t av_set;
905 
906  /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
907  int av_level;
909 
911 
912 
913 /* Per basic block data. This array is indexed by basic block index. */
915 
916 /* Get data for BB. */
917 #define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
918 
919 /* Get BB's note_list.
920  A note_list is a list of various notes that was scattered across BB
921  before scheduling, and will be appended at the beginning of BB after
922  scheduling is finished. */
923 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
924 
925 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
926 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
927 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
928 
929 /* Used in bb_in_ebb_p. */
931 
932 /* The loop nest being pipelined. */
933 extern struct loop *current_loop_nest;
934 
935 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
936 extern sbitmap bbs_pipelined;
937 
938 /* Various flags. */
939 extern bool enable_moveup_set_path_p;
940 extern bool pipelining_p;
941 extern bool bookkeeping_p;
942 extern int max_insns_to_rename;
943 extern bool preheader_removed;
944 
945 /* Software lookahead window size.
946  According to the results in Nakatani and Ebcioglu [1993], window size of 16
947  is enough to extract most ILP in integer code. */
948 #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
949 
950 extern regset sel_all_regs;
951 
952 
953 /* Successor iterator backend. */
954 typedef struct
955 {
956  /* True if we're at BB end. */
957  bool bb_end;
958 
959  /* An edge on which we're iterating. */
960  edge e1;
961 
962  /* The previous edge saved after skipping empty blocks. */
963  edge e2;
964 
965  /* Edge iterator used when there are successors in other basic blocks. */
966  edge_iterator ei;
967 
968  /* Successor block we're traversing. */
969  basic_block bb;
970 
971  /* Flags that are passed to the iterator. We return only successors
972  that comply to these flags. */
973  short flags;
974 
975  /* When flags include SUCCS_ALL, this will be set to the exact type
976  of the successor we're traversing now. */
977  short current_flags;
978 
979  /* If skip to loop exits, save here information about loop exits. */
980  int current_exit;
981  vec<edge> loop_exits;
982 } succ_iterator;
984 /* A structure returning all successor's information. */
986 {
987  /* Flags that these succcessors were computed with. */
988  short flags;
989 
990  /* Successors that correspond to the flags. */
992 
993  /* Their probabilities. As of now, we don't need this for other
994  successors. */
996 
997  /* Other successors. */
999 
1000  /* Probability of all successors. */
1001  int all_prob;
1003  /* The number of all successors. */
1004  int all_succs_n;
1005 
1006  /* The number of good successors. */
1007  int succs_ok_n;
1008 };
1009 
1010 /* Some needed definitions. */
1012 
1013 extern insn_t sel_bb_head (basic_block);
1014 extern insn_t sel_bb_end (basic_block);
1015 extern bool sel_bb_empty_p (basic_block);
1016 extern bool in_current_region_p (basic_block);
1017 
1018 /* True when BB is a header of the inner loop. */
1019 static inline bool
1021 {
1022  struct loop *inner_loop;
1023 
1024  if (!current_loop_nest)
1025  return false;
1026 
1027  if (bb == EXIT_BLOCK_PTR)
1028  return false;
1029 
1030  inner_loop = bb->loop_father;
1031  if (inner_loop == current_loop_nest)
1032  return false;
1034  /* If successor belongs to another loop. */
1035  if (bb == inner_loop->header
1036  && flow_bb_inside_loop_p (current_loop_nest, bb))
1037  {
1038  /* Could be '=' here because of wrong loop depths. */
1039  gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1040  return true;
1041  }
1042 
1043  return false;
1044 }
1045 
1046 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1047 static inline vec<edge>
1049 {
1050  vec<edge> edges = vNULL;
1051  struct loop_exit *exit;
1052 
1053  gcc_assert (loop->latch != EXIT_BLOCK_PTR
1054  && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1055 
1056  for (exit = loop->exits->next; exit->e; exit = exit->next)
1057  {
1058  int i;
1059  edge e;
1060  bool was_dest = false;
1061 
1062  for (i = 0; edges.iterate (i, &e); i++)
1063  if (e->dest == exit->e->dest)
1064  {
1065  was_dest = true;
1066  break;
1067  }
1068 
1069  if (!was_dest)
1070  edges.safe_push (exit->e);
1071  }
1072  return edges;
1073 }
1074 
1075 static bool
1077 {
1078  insn_t first = sel_bb_head (bb), last;
1079 
1080  if (first == NULL_RTX)
1081  return true;
1082 
1083  if (!INSN_NOP_P (first))
1084  return false;
1085 
1086  if (bb == EXIT_BLOCK_PTR)
1087  return false;
1088 
1089  last = sel_bb_end (bb);
1090  if (first != last)
1091  return false;
1092 
1093  return true;
1094 }
1095 
1096 /* Collect all loop exits recursively, skipping empty BBs between them.
1097  E.g. if BB is a loop header which has several loop exits,
1098  traverse all of them and if any of them turns out to be another loop header
1099  (after skipping empty BBs), add its loop exits to the resulting vector
1100  as well. */
1101 static inline vec<edge>
1104  vec<edge> exits = vNULL;
1105 
1106  /* If bb is empty, and we're skipping to loop exits, then
1107  consider bb as a possible gate to the inner loop now. */
1108  while (sel_bb_empty_or_nop_p (bb)
1109  && in_current_region_p (bb)
1110  && EDGE_COUNT (bb->succs) > 0)
1111  {
1112  bb = single_succ (bb);
1113 
1114  /* This empty block could only lead outside the region. */
1115  gcc_assert (! in_current_region_p (bb));
1116  }
1117 
1118  /* And now check whether we should skip over inner loop. */
1120  {
1121  struct loop *this_loop;
1122  struct loop *pred_loop = NULL;
1123  int i;
1124  edge e;
1125 
1126  for (this_loop = bb->loop_father;
1127  this_loop && this_loop != current_loop_nest;
1128  this_loop = loop_outer (this_loop))
1129  pred_loop = this_loop;
1130 
1131  this_loop = pred_loop;
1132  gcc_assert (this_loop != NULL);
1134  exits = get_loop_exit_edges_unique_dests (this_loop);
1135 
1136  /* Traverse all loop headers. */
1137  for (i = 0; exits.iterate (i, &e); i++)
1139  || inner_loop_header_p (e->dest))
1140  {
1141  vec<edge> next_exits = get_all_loop_exits (e->dest);
1142 
1143  if (next_exits.exists ())
1144  {
1145  int j;
1146  edge ne;
1148  /* Add all loop exits for the current edge into the
1149  resulting vector. */
1150  for (j = 0; next_exits.iterate (j, &ne); j++)
1151  exits.safe_push (ne);
1152 
1153  /* Remove the original edge. */
1154  exits.ordered_remove (i);
1155 
1156  /* Decrease the loop counter so we won't skip anything. */
1157  i--;
1158  continue;
1159  }
1160  }
1161  }
1162 
1163  return exits;
1165 
1166 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1167  Any successor will fall into exactly one category. */
1169 /* Include normal successors. */
1170 #define SUCCS_NORMAL (1)
1171 
1172 /* Include back-edge successors. */
1173 #define SUCCS_BACK (2)
1174 
1175 /* Include successors that are outside of the current region. */
1176 #define SUCCS_OUT (4)
1177 
1178 /* When pipelining of the outer loops is enabled, skip innermost loops
1179  to their exits. */
1180 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1181 
1182 /* Include all successors. */
1183 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1184 
1185 /* We need to return a succ_iterator to avoid 'unitialized' warning
1186  during bootstrap. */
1187 static inline succ_iterator
1188 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1189 {
1190  succ_iterator i;
1191 
1192  basic_block bb = BLOCK_FOR_INSN (insn);
1193 
1194  gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1195 
1196  i.flags = flags;
1197 
1198  /* Avoid 'uninitialized' warning. */
1199  *succp = NULL;
1200  i.e1 = NULL;
1201  i.e2 = NULL;
1202  i.bb = bb;
1203  i.current_flags = 0;
1204  i.current_exit = -1;
1205  i.loop_exits.create (0);
1206 
1207  if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
1208  {
1209  i.bb_end = false;
1210 
1211  /* Avoid 'uninitialized' warning. */
1212  i.ei.index = 0;
1213  i.ei.container = 0;
1214  }
1215  else
1216  {
1217  i.ei = ei_start (bb->succs);
1218  i.bb_end = true;
1219  }
1220 
1221  return i;
1222 }
1223 
1224 static inline bool
1225 _succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1226  bool check (edge, succ_iterator *))
1227 {
1228  if (!ip->bb_end)
1229  {
1230  /* When we're in a middle of a basic block, return
1231  the next insn immediately, but only when SUCCS_NORMAL is set. */
1232  if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1233  return false;
1234 
1235  *succp = NEXT_INSN (insn);
1236  ip->current_flags = SUCCS_NORMAL;
1237  return true;
1238  }
1239  else
1240  {
1241  while (1)
1242  {
1243  edge e_tmp = NULL;
1244 
1245  /* First, try loop exits, if we have them. */
1246  if (ip->loop_exits.exists ())
1247  {
1248  do
1249  {
1250  ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1251  ip->current_exit++;
1252  }
1253  while (e_tmp && !check (e_tmp, ip));
1254 
1255  if (!e_tmp)
1256  ip->loop_exits.release ();
1257  }
1258 
1259  /* If we have found a successor, then great. */
1260  if (e_tmp)
1261  {
1262  ip->e1 = e_tmp;
1263  break;
1264  }
1265 
1266  /* If not, then try the next edge. */
1267  while (ei_cond (ip->ei, &(ip->e1)))
1268  {
1269  basic_block bb = ip->e1->dest;
1270 
1271  /* Consider bb as a possible loop header. */
1272  if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1273  && flag_sel_sched_pipelining_outer_loops
1274  && (!in_current_region_p (bb)
1275  || BLOCK_TO_BB (ip->bb->index)
1276  < BLOCK_TO_BB (bb->index)))
1277  {
1278  /* Get all loop exits recursively. */
1279  ip->loop_exits = get_all_loop_exits (bb);
1280 
1281  if (ip->loop_exits.exists ())
1282  {
1283  ip->current_exit = 0;
1284  /* Move the iterator now, because we won't do
1285  succ_iter_next until loop exits will end. */
1286  ei_next (&(ip->ei));
1287  break;
1288  }
1289  }
1290 
1291  /* bb is not a loop header, check as usual. */
1292  if (check (ip->e1, ip))
1293  break;
1294 
1295  ei_next (&(ip->ei));
1296  }
1297 
1298  /* If loop_exits are non null, we have found an inner loop;
1299  do one more iteration to fetch an edge from these exits. */
1300  if (ip->loop_exits.exists ())
1301  continue;
1302 
1303  /* Otherwise, we've found an edge in a usual way. Break now. */
1304  break;
1305  }
1306 
1307  if (ip->e1)
1308  {
1309  basic_block bb = ip->e2->dest;
1310 
1311  if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
1312  *succp = exit_insn;
1313  else
1314  {
1315  *succp = sel_bb_head (bb);
1316 
1317  gcc_assert (ip->flags != SUCCS_NORMAL
1318  || *succp == NEXT_INSN (bb_note (bb)));
1319  gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1320  }
1321 
1322  return true;
1323  }
1324  else
1325  return false;
1326  }
1327 }
1328 
1329 static inline void
1331 {
1332  gcc_assert (!ip->e2 || ip->e1);
1333 
1334  if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1335  ei_next (&(ip->ei));
1336 }
1337 
1338 /* Returns true when E1 is an eligible successor edge, possibly skipping
1339  empty blocks. When E2P is not null, the resulting edge is written there.
1340  FLAGS are used to specify whether back edges and out-of-region edges
1341  should be considered. */
1342 static inline bool
1344 {
1345  edge e2 = e1;
1346  basic_block bb;
1347  int flags = ip->flags;
1348  bool src_outside_rgn = !in_current_region_p (e1->src);
1349 
1350  gcc_assert (flags != 0);
1351 
1352  if (src_outside_rgn)
1353  {
1354  /* Any successor of the block that is outside current region is
1355  ineligible, except when we're skipping to loop exits. */
1356  gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1357 
1358  if (flags & SUCCS_OUT)
1359  return false;
1360  }
1361 
1362  bb = e2->dest;
1363 
1364  /* Skip empty blocks, but be careful not to leave the region. */
1365  while (1)
1366  {
1367  if (!sel_bb_empty_p (bb))
1368  {
1369  edge ne;
1370  basic_block nbb;
1371 
1372  if (!sel_bb_empty_or_nop_p (bb))
1373  break;
1374 
1375  ne = EDGE_SUCC (bb, 0);
1376  nbb = ne->dest;
1377 
1378  if (!in_current_region_p (nbb)
1379  && !(flags & SUCCS_OUT))
1380  break;
1381 
1382  e2 = ne;
1383  bb = nbb;
1384  continue;
1385  }
1386 
1387  if (!in_current_region_p (bb)
1388  && !(flags & SUCCS_OUT))
1389  return false;
1390 
1391  if (EDGE_COUNT (bb->succs) == 0)
1392  return false;
1393 
1394  e2 = EDGE_SUCC (bb, 0);
1395  bb = e2->dest;
1396  }
1397 
1398  /* Save the second edge for later checks. */
1399  ip->e2 = e2;
1400 
1401  if (in_current_region_p (bb))
1402  {
1403  /* BLOCK_TO_BB sets topological order of the region here.
1404  It is important to use real predecessor here, which is ip->bb,
1405  as we may well have e1->src outside current region,
1406  when skipping to loop exits. */
1407  bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1408  < BLOCK_TO_BB (bb->index));
1409 
1410  /* This is true for the all cases except the last one. */
1411  ip->current_flags = SUCCS_NORMAL;
1413  /* We are advancing forward in the region, as usual. */
1414  if (succeeds_in_top_order)
1415  {
1416  /* We are skipping to loop exits here. */
1417  gcc_assert (!src_outside_rgn
1418  || flag_sel_sched_pipelining_outer_loops);
1419  return !!(flags & SUCCS_NORMAL);
1420  }
1421 
1422  /* This is a back edge. During pipelining we ignore back edges,
1423  but only when it leads to the same loop. It can lead to the header
1424  of the outer loop, which will also be the preheader of
1425  the current loop. */
1426  if (pipelining_p
1427  && e1->src->loop_father == bb->loop_father)
1428  return !!(flags & SUCCS_NORMAL);
1429 
1430  /* A back edge should be requested explicitly. */
1431  ip->current_flags = SUCCS_BACK;
1432  return !!(flags & SUCCS_BACK);
1433  }
1434 
1435  ip->current_flags = SUCCS_OUT;
1436  return !!(flags & SUCCS_OUT);
1437 }
1438 
1439 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1440  for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1441  _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1442  _succ_iter_next (&(ITER)))
1443 
1444 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1445  FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1446 
1447 /* Return the current edge along which a successor was built. */
1448 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1449 
1450 /* Return the next block of BB not running into inconsistencies. */
1451 static inline basic_block
1453 {
1454  switch (EDGE_COUNT (bb->succs))
1455  {
1456  case 0:
1457  return bb->next_bb;
1458 
1459  case 1:
1460  return single_succ (bb);
1461 
1462  case 2:
1463  return FALLTHRU_EDGE (bb)->dest;
1464 
1465  default:
1466  return bb->next_bb;
1467  }
1468 
1469  gcc_unreachable ();
1470 }
1471 
1472 
1473 
1474 /* Functions that are used in sel-sched.c. */
1475 
1476 /* List functions. */
1477 extern ilist_t ilist_copy (ilist_t);
1478 extern ilist_t ilist_invert (ilist_t);
1479 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1480 extern void blist_remove (blist_t *);
1481 extern void flist_tail_init (flist_tail_t);
1482 
1483 extern fence_t flist_lookup (flist_t, insn_t);
1484 extern void flist_clear (flist_t *);
1485 extern void def_list_add (def_list_t *, insn_t, bool);
1486 
1487 /* Target context functions. */
1488 extern tc_t create_target_context (bool);
1489 extern void set_target_context (tc_t);
1490 extern void reset_target_context (tc_t, bool);
1491 
1492 /* Deps context functions. */
1493 extern void advance_deps_context (deps_t, insn_t);
1494 
1495 /* Fences functions. */
1496 extern void init_fences (insn_t);
1497 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1498 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1499 extern void move_fence_to_fences (flist_t, flist_tail_t);
1500 
1501 /* Pool functions. */
1502 extern regset get_regset_from_pool (void);
1503 extern regset get_clear_regset_from_pool (void);
1504 extern void return_regset_to_pool (regset);
1505 extern void free_regset_pool (void);
1506 
1508 extern void return_nop_to_pool (insn_t, bool);
1509 extern void free_nop_pool (void);
1510 
1511 /* Vinsns functions. */
1512 extern bool vinsn_separable_p (vinsn_t);
1513 extern bool vinsn_cond_branch_p (vinsn_t);
1514 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1515 extern int sel_vinsn_cost (vinsn_t);
1518 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1519 extern insn_t sel_move_insn (expr_t, int, insn_t);
1520 extern void vinsn_attach (vinsn_t);
1521 extern void vinsn_detach (vinsn_t);
1522 extern vinsn_t vinsn_copy (vinsn_t, bool);
1523 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1524 
1525 /* EXPR functions. */
1526 extern void copy_expr (expr_t, expr_t);
1528 extern void merge_expr_data (expr_t, expr_t, insn_t);
1529 extern void merge_expr (expr_t, expr_t, insn_t);
1530 extern void clear_expr (expr_t);
1531 extern unsigned expr_dest_regno (expr_t);
1532 extern rtx expr_dest_reg (expr_t);
1534  rtx, vinsn_t, bool);
1536  unsigned, enum local_trans_type,
1537  vinsn_t, vinsn_t, ds_t);
1539 extern int speculate_expr (expr_t, ds_t);
1540 
1541 /* Av set functions. */
1542 extern void av_set_add (av_set_t *, expr_t);
1543 extern void av_set_iter_remove (av_set_iterator *);
1544 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1545 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1546 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1547 extern av_set_t av_set_copy (av_set_t);
1548 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1550 extern void av_set_clear (av_set_t *);
1551 extern void av_set_leave_one_nonspec (av_set_t *);
1552 extern expr_t av_set_element (av_set_t, int);
1554 extern void av_set_split_usefulness (av_set_t, int, int);
1556 
1557 extern void sel_save_haifa_priorities (void);
1558 
1559 extern void sel_init_global_and_expr (bb_vec_t);
1560 extern void sel_finish_global_and_expr (void);
1561 
1562 extern regset compute_live (insn_t);
1563 extern bool register_unavailable_p (regset, rtx);
1564 
1565 /* Dependence analysis functions. */
1566 extern void sel_clear_has_dependence (void);
1567 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1568 
1569 extern int tick_check_p (expr_t, deps_t, fence_t);
1570 
1571 /* Functions to work with insns. */
1572 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1573 extern bool insn_eligible_for_subst_p (insn_t);
1574 extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1575 
1577 extern bool sel_remove_insn (insn_t, bool, bool);
1578 extern bool bb_header_p (insn_t);
1579 extern void sel_init_invalid_data_sets (insn_t);
1580 extern bool insn_at_boundary_p (insn_t);
1581 
1582 /* Basic block and CFG functions. */
1583 
1584 extern insn_t sel_bb_head (basic_block);
1585 extern bool sel_bb_head_p (insn_t);
1586 extern insn_t sel_bb_end (basic_block);
1587 extern bool sel_bb_end_p (insn_t);
1588 extern bool sel_bb_empty_p (basic_block);
1589 
1590 extern bool in_current_region_p (basic_block);
1592 
1593 extern void sel_init_bbs (bb_vec_t);
1594 extern void sel_finish_bbs (void);
1595 
1596 extern struct succs_info * compute_succs_info (insn_t, short);
1597 extern void free_succs_info (struct succs_info *);
1598 extern bool sel_insn_has_single_succ_p (insn_t, int);
1599 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1600 extern int get_seqno_by_preds (rtx);
1601 
1602 extern bool bb_ends_ebb_p (basic_block);
1603 extern bool in_same_ebb_p (insn_t, insn_t);
1604 
1605 extern bool tidy_control_flow (basic_block, bool);
1606 extern void free_bb_note_pool (void);
1607 
1608 extern void purge_empty_blocks (void);
1613 extern void sel_init_pipelining (void);
1614 extern void sel_finish_pipelining (void);
1615 extern void sel_sched_region (int);
1616 extern loop_p get_loop_nest_for_rgn (unsigned int);
1617 extern bool considered_for_pipelining_p (struct loop *);
1619 extern void sel_add_loop_preheaders (bb_vec_t *);
1620 extern bool sel_is_loop_preheader_p (basic_block);
1621 extern void clear_outdated_rtx_info (basic_block);
1622 extern void free_data_sets (basic_block);
1624 extern void copy_data_sets (basic_block, basic_block);
1625 
1626 extern void sel_register_cfg_hooks (void);
1627 extern void sel_unregister_cfg_hooks (void);
1628 
1629 /* Expression transformation routines. */
1631 extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1633 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1634 
1635 /* Various initialization functions. */
1636 extern void init_lv_sets (void);
1637 extern void free_lv_sets (void);
1638 extern void setup_nop_and_exit_insns (void);
1639 extern void free_nop_and_exit_insns (void);
1640 extern void free_data_for_scheduled_insn (insn_t);
1641 extern void setup_nop_vinsn (void);
1642 extern void free_nop_vinsn (void);
1643 extern void sel_set_sched_flags (void);
1644 extern void sel_setup_sched_infos (void);
1645 extern void alloc_sched_pools (void);
1646 extern void free_sched_pools (void);
1647 
1648 #endif /* GCC_SEL_SCHED_IR_H */
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656