GCC Middle and Back End API Reference
|
Go to the source code of this file.
Data Structures | |
struct | ira_loop_tree_node |
struct | live_range |
struct | ira_object |
struct | ira_allocno |
struct | ira_emit_data |
struct | ira_allocno_pref |
struct | ira_allocno_copy |
struct | ira_spilled_reg_stack_slot |
struct | minmax_set_iterator |
struct | target_ira_int |
struct | ira_allocno_iterator |
struct | ira_object_iterator |
struct | ira_allocno_object_iterator |
struct | ira_pref_iterator |
struct | ira_copy_iterator |
struct | ira_object_conflict_iterator |
Typedefs | |
typedef struct live_range * | live_range_t |
typedef struct ira_allocno * | ira_allocno_t |
typedef struct ira_allocno_pref * | ira_pref_t |
typedef struct ira_allocno_copy * | ira_copy_t |
typedef struct ira_object * | ira_object_t |
typedef struct ira_loop_tree_node * | ira_loop_tree_node_t |
typedef unsigned short | move_table [N_REG_CLASSES] |
typedef struct ira_emit_data * | ira_emit_data_t |
typedef struct ira_allocno* ira_allocno_t |
typedef struct ira_allocno_copy* ira_copy_t |
typedef struct ira_emit_data* ira_emit_data_t |
Typedef for pointer to the subsequent structure.
typedef struct ira_loop_tree_node* ira_loop_tree_node_t |
Definition of vector of allocnos and copies.
Typedef for pointer to the subsequent structure.
typedef struct ira_object* ira_object_t |
typedef struct ira_allocno_pref* ira_pref_t |
typedef struct live_range* live_range_t |
Typedefs for pointers to allocno live range, allocno, and copy of allocnos.
typedef unsigned short move_table[N_REG_CLASSES] |
|
inlinestatic |
Abbreviation for frequent emit data access.
Referenced by modify_move_list().
void debug | ( | ira_allocno_copy & | ref | ) |
void debug | ( | ira_allocno_copy * | ptr | ) |
void debug | ( | ira_allocno & | ref | ) |
void debug | ( | ira_allocno * | ptr | ) |
void debug | ( | live_range & | ref | ) |
void debug | ( | live_range * | ptr | ) |
|
inlinestatic |
Return number of hard registers in hard register SET.
Referenced by finish_allocno_hard_regs(), and ira_debug_disposition().
void ior_hard_reg_conflicts | ( | ira_allocno_t | , |
HARD_REG_SET * | |||
) |
ira_copy_t ira_add_allocno_copy | ( | ira_allocno_t | first, |
ira_allocno_t | second, | ||
int | freq, | ||
bool | constraint_p, | ||
rtx | insn, | ||
ira_loop_tree_node_t | loop_tree_node | ||
) |
Create (or update frequency if the copy already exists) and return the copy of allocnos FIRST and SECOND with frequency FREQ corresponding to move insn INSN (if any) and originated from LOOP_TREE_NODE.
References print_allocno_copies().
Referenced by add_copies().
void ira_add_allocno_pref | ( | ira_allocno_t | , |
int | , | ||
int | |||
) |
void ira_add_live_range_to_object | ( | ira_object_t | , |
int | , | ||
int | |||
) |
void* ira_allocate | ( | size_t | ) |
|
inlinestatic |
Allocate cost vector *VEC for hard registers of ACLASS and add values of vector SRC into the vector if it is necessary
|
inlinestatic |
Allocate cost vector *VEC for hard registers of ACLASS and copy values of vector SRC into the vector if it is necessary
Referenced by update_costs_from_allocno().
|
inlinestatic |
To save memory we use a lazy approach for allocation and initialization of the cost vectors. We do this only when it is really necessary.
Allocate cost vector *VEC for hard registers of ACLASS and initialize the elements by VAL if it is necessary
Referenced by finish_costs(), ira_init_costs(), and process_single_reg_class_operands().
|
inlinestatic |
Allocate cost vector *VEC for hard registers of ACLASS and copy values of vector SRC into the vector or initialize it by VAL (if SRC is null).
bitmap ira_allocate_bitmap | ( | void | ) |
Allocate and returns bitmap for IRA.
Referenced by coalesced_pseudo_reg_slot_compare(), do_coloring(), and ira_reuse_stack_slot().
void ira_allocate_conflict_vec | ( | ira_object_t | , |
int | |||
) |
int* ira_allocate_cost_vector | ( | reg_class_t | ) |
void ira_allocate_object_conflicts | ( | ira_object_t | , |
int | |||
) |
|
inlinestatic |
Return TRUE if we have more allocnos to visit, in which case *A is set to the allocno to be visited. Otherwise, return FALSE.
|
inlinestatic |
Initialize the iterator I.
|
inlinestatic |
Return TRUE if we have more objects to visit in allocno A, in which case *O is set to the object to be visited. Otherwise, return FALSE.
|
inlinestatic |
Initialize the iterator I.
bool ira_build | ( | void | ) |
Create a internal representation (IR) for IRA (allocnos, copies, loop tree nodes). The function returns TRUE if we generate loop structure (besides nodes representing all function and the basic blocks) for regional allocation. A true return means that we really need to flatten IR before the reload.
Remove all regions but root one.
We don't save hard registers around calls for fast allocation -- add caller clobbered registers as conflicting ones to allocno crossing calls.
Referenced by split_live_ranges_for_shrink_wrap().
void ira_build_conflicts | ( | void | ) |
Entry function which builds allocno conflicts and allocno copies and accumulate some allocno info on upper level regions.
We need finished conflict table for the subsequent call.
Now we can free memory for the conflict table (see function build_object_conflicts for details).
For debugging purposes don't put user defined variables in callee-clobbered registers. However, do allow parameters in callee-clobbered registers to improve debugging. This is a bit of a fragile hack.
Allocnos bigger than the saved part of call saved regs must conflict with them.
void ira_color | ( | void | ) |
Entry function doing coloring.
Setup updated costs.
Referenced by split_live_ranges_for_shrink_wrap().
void ira_compress_allocno_live_ranges | ( | void | ) |
Compress allocno live ranges.
bool ira_conflict_vector_profitable_p | ( | ira_object_t | , |
int | |||
) |
|
inlinestatic |
Return TRUE if we have more copies to visit, in which case *CP is set to the copy to be visited. Otherwise, return FALSE.
References ira_allocate_cost_vector(), len, and memcpy().
|
inlinestatic |
Initialize the iterator I.
live_range_t ira_copy_live_range_list | ( | live_range_t | ) |
void ira_costs | ( | void | ) |
Entry function which defines register class, memory and hard register costs for each allocno.
ira_allocno_t ira_create_allocno | ( | int | regno, |
bool | cap_p, | ||
ira_loop_tree_node_t | loop_tree_node | ||
) |
Create and return the allocno corresponding to REGNO in LOOP_TREE_NODE. Add the allocno to the list of allocnos with the same regno if CAP_P is FALSE.
Remember that we can create temporary allocnos to break cycles in register shuffle on region borders (see ira-emit.c).
void ira_create_allocno_live_ranges | ( | void | ) |
The main entry function creates live ranges, set up CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and calculate register pressure info.
Clean up.
void ira_create_allocno_objects | ( | ira_allocno_t | ) |
ira_copy_t ira_create_copy | ( | ira_allocno_t | first, |
ira_allocno_t | second, | ||
int | freq, | ||
bool | constraint_p, | ||
rtx | insn, | ||
ira_loop_tree_node_t | loop_tree_node | ||
) |
Create and return copy with given attributes LOOP_TREE_NODE, FIRST, SECOND, FREQ, CONSTRAINT_P, and INSN.
References ira_allocno_copy::constraint_p, ira_allocno_copy::first, ira_allocno_copy::freq, ira_allocno_copy::insn, ira_allocno_copy::num, and ira_allocno_copy::second.
live_range_t ira_create_live_range | ( | ira_object_t | obj, |
int | start, | ||
int | finish, | ||
live_range_t | next | ||
) |
Create and return a live range for OBJECT with given attributes.
References first, last, and live_range::start.
Referenced by create_cap_allocno().
ira_pref_t ira_create_pref | ( | ira_allocno_t | , |
int | , | ||
int | |||
) |
void ira_debug_allocno_classes | ( | void | ) |
Output all possible allocno and translation classes and the translation maps into stderr.
References targetm.
void ira_debug_allocno_copies | ( | ira_allocno_t | ) |
void ira_debug_allocno_live_ranges | ( | ira_allocno_t | ) |
void ira_debug_allocno_prefs | ( | ira_allocno_t | ) |
void ira_debug_conflicts | ( | bool | ) |
ira-conflicts.c
void ira_debug_copies | ( | void | ) |
Print info about all copies into stderr.
void ira_debug_copy | ( | ira_copy_t | ) |
void ira_debug_disposition | ( | void | ) |
Outputs information about allocation of all allocnos into stderr.
References hard_reg_set_size(), and temp_hard_regset.
void ira_debug_hard_regs_forest | ( | void | ) |
ira-color.c
Print the allocno hard register forest to stderr.
void ira_debug_live_range_list | ( | live_range_t | ) |
void ira_debug_live_ranges | ( | void | ) |
Print live ranges of all allocnos to stderr.
void ira_debug_pref | ( | ira_pref_t | ) |
void ira_debug_prefs | ( | void | ) |
Print info about all prefs into stderr.
void ira_destroy | ( | void | ) |
Release the data created by function ira_build.
void ira_emit | ( | bool | ) |
|
inlinestatic |
Return true if equivalence of pseudo REGNO is not a lvalue.
void ira_finish_allocno_live_ranges | ( | void | ) |
Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES.
void ira_finish_assign | ( | void | ) |
Deallocate data used by assign_hard_reg.
void ira_finish_costs_once | ( | void | ) |
Function called once at the end of compiler work.
void ira_finish_emit_data | ( | void | ) |
Free the emit data.
References ira_free().
void ira_finish_live_range | ( | live_range_t | ) |
void ira_finish_live_range_list | ( | live_range_t | ) |
void ira_flattening | ( | int | , |
int | |||
) |
void ira_free | ( | void * | addr | ) |
void ira_free_allocno_updated_costs | ( | ira_allocno_t | ) |
void ira_free_bitmap | ( | bitmap | ) |
Referenced by coalesced_pseudo_reg_slot_compare().
void ira_free_cost_vector | ( | int * | , |
reg_class_t | |||
) |
int ira_get_dup_out_num | ( | int | op_num, |
HARD_REG_SET & | alts | ||
) |
|
inlinestatic |
The function returns TRUE if hard registers starting with HARD_REGNO and containing value of MODE are fully in set HARD_REGSET.
|
inlinestatic |
The function returns TRUE if at least one hard register from ones starting with HARD_REGNO and containing value of MODE are in set HARD_REGSET.
Referenced by ira_init_costs().
void ira_init_costs | ( | void | ) |
This is called each time register related information is changed.
Don't use ira_allocate because vectors live through several IRA calls.
References ira_allocate_and_set_costs(), and ira_hard_reg_set_intersection_p().
void ira_init_costs_once | ( | void | ) |
ira-costs.c
Function called once during compiler work.
void ira_init_register_move_cost | ( | enum | machine_mode | ) |
|
inlinestatic |
Initialize register costs for MODE if necessary.
References ira_copy_iterator::n.
Referenced by process_single_reg_class_operands().
void ira_initiate_assign | ( | void | ) |
Allocate and initialize data necessary for assign_hard_reg.
Referenced by move_unallocated_pseudos(), and split_live_ranges_for_shrink_wrap().
void ira_initiate_emit_data | ( | void | ) |
bool ira_live_ranges_intersect_p | ( | live_range_t | , |
live_range_t | |||
) |
int ira_loop_edge_freq | ( | ira_loop_tree_node_t | , |
int | , | ||
bool | |||
) |
live_range_t ira_merge_live_ranges | ( | live_range_t | , |
live_range_t | |||
) |
|
inlinestatic |
Return TRUE if we have more conflicting allocnos to visit, in which case *A is set to the allocno to be visited. Otherwise, return FALSE.
Skip words that are zeros.
If we have reached the end, break.
Skip bits that are zero.
|
inlinestatic |
Initialize the iterator I with ALLOCNO conflicts.
|
inlinestatic |
Return TRUE if we have more objects to visit, in which case *OBJ is set to the object to be visited. Otherwise, return FALSE.
|
inlinestatic |
Initialize the iterator I.
References ira_object_conflict_iterator::base_conflict_id, ira_object_conflict_iterator::bit_num, and ira_object_conflict_iterator::size.
ira_allocno_t ira_parent_allocno | ( | ira_allocno_t | ) |
ira_allocno_t ira_parent_or_cap_allocno | ( | ira_allocno_t | ) |
|
inlinestatic |
Return TRUE if we have more prefs to visit, in which case *PREF is set to the pref to be visited. Otherwise, return FALSE.
|
inlinestatic |
Initialize the iterator I.
void ira_print_disposition | ( | FILE * | ) |
void ira_print_expanded_allocno | ( | ira_allocno_t | ) |
void ira_print_live_range_list | ( | FILE * | , |
live_range_t | |||
) |
void ira_reassign_conflict_allocnos | ( | int | ) |
void ira_rebuild_start_finish_chains | ( | void | ) |
ira-lives.c
Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after new live ranges and program points were added as a result if new insn generation.
Referenced by ira_debug_live_range_list().
void ira_remove_allocno_prefs | ( | ira_allocno_t | ) |
void ira_remove_pref | ( | ira_pref_t | ) |
void ira_set_allocno_class | ( | ira_allocno_t | , |
enum | reg_class | ||
) |
void ira_setup_alts | ( | rtx | insn, |
HARD_REG_SET & | alts | ||
) |
void ira_traverse_loop_tree | ( | bool | bb_p, |
ira_loop_tree_node_t | loop_node, | ||
void(*)(ira_loop_tree_node_t) | preorder_func, | ||
void(*)(ira_loop_tree_node_t) | postorder_func | ||
) |
This recursive function traverses loop tree with root LOOP_NODE calling non-null functions PREORDER_FUNC and POSTORDER_FUNC correspondingly in preorder and postorder. The function sets up IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P, basic block nodes of LOOP_NODE is also processed (before its subloop nodes). If BB_P is set and POSTORDER_FUNC is given, the basic blocks in the loop are passed in the *reverse* post-order of the *reverse* CFG. This is only used by ira_create_allocno_live_ranges, which wants to visit basic blocks in this order to minimize the number of elements per live range chain. Note that the loop tree nodes are still visited in the normal, forward post-order of the loop tree.
Add all nodes to the set of nodes to visit. The IRA loop tree is set up such that nodes in the loop body appear in a pre-order of their place in the CFG.
Referenced by create_loop_allocnos(), print_conflicts(), and process_bb_for_costs().
void ira_tune_allocno_costs | ( | void | ) |
Change hard register costs for allocnos which lives through function calls. This is called only when we found all intersected calls during building allocno live ranges.
Some targets allow pseudos to be allocated to unaligned sequences of hard registers. However, selecting an unaligned sequence can unnecessarily restrict later allocations. So increase the cost of unaligned hard regs to encourage the use of aligned hard regs.
|
inlinestatic |
Return TRUE if we have more allocnos to visit, in which case *N is set to the number of the element to be visited. Otherwise, return FALSE.
Skip words that are zeros.
If we have reached the end, break.
Skip bits that are zero.
|
inlinestatic |
Initialize the iterator I for bit vector VEC containing minimal and maximal values MIN and MAX.
|
inlinestatic |
Advance to the next element in the set.
struct target_ira_int default_target_ira_int |
int first_moveable_pseudo |
Record the range of register numbers added by find_moveable_pseudos.
int internal_flag_ira_verbose |
A modified value of flag `-fira-verbose' used internally.
Referenced by allocno_cost_compare_func(), bucket_allocno_compare_func(), build_conflict_bit_table(), collect_spilled_coalesced_allocnos(), ira_debug_live_range_list(), modify_move_list(), move_unallocated_pseudos(), process_bb_node_lives(), push_only_colorable(), and split_live_ranges_for_shrink_wrap().
int ira_additional_jumps_num |
Referenced by split_live_ranges_for_shrink_wrap().
ira_emit_data_t ira_allocno_emit_data |
Data used to emit live range split insns and to flattening IR.
@verbatim
Integrated Register Allocator. Changing code and generating moves. Copyright (C) 2006-2013 Free Software Foundation, Inc. Contributed by Vladimir Makarov vmaka. rov@ redha t.co m
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see http://www.gnu.org/licenses/.
When we have more one region, we need to change the original RTL code after coloring. Let us consider two allocnos representing the same pseudo-register outside and inside a region respectively. They can get different hard-registers. The reload pass works on pseudo registers basis and there is no way to say the reload that pseudo could be in different registers and it is even more difficult to say in what places of the code the pseudo should have particular hard-registers. So in this case IRA has to create and use a new pseudo-register inside the region and adds code to move allocno values on the region's borders. This is done by the code in this file. The code makes top-down traversal of the regions and generate new pseudos and the move code on the region borders. In some complicated cases IRA can create a new pseudo used temporarily to move allocno values when a swap of values stored in two hard-registers is needed (e.g. two allocnos representing different pseudos outside region got respectively hard registers 1 and 2 and the corresponding allocnos inside the region got respectively hard registers 2 and 1). At this stage, the new pseudo is marked as spilled. IRA still creates the pseudo-register and the moves on the region borders even when the both corresponding allocnos were assigned to the same hard-register. It is done because, if the reload pass for some reason spills a pseudo-register representing the original pseudo outside or inside the region, the effect will be smaller because another pseudo will still be in the hard-register. In most cases, this is better then spilling the original pseudo in its whole live-range. If reload does not change the allocation for the two pseudo-registers, the trivial move will be removed by post-reload optimizations. IRA does not generate a new pseudo and moves for the allocno values if the both allocnos representing an original pseudo inside and outside region assigned to the same hard register when the register pressure in the region for the corresponding pressure class is less than number of available hard registers for given pressure class. IRA also does some optimizations to remove redundant moves which is transformed into stores by the reload pass on CFG edges representing exits from the region. IRA tries to reduce duplication of code generated on CFG edges which are enters and exits to/from regions by moving some code to the edge sources or destinations when it is possible.
Data used to emit live range split insns and to flattening IR.
ira_allocno_t* ira_allocnos |
Array of references to all allocnos. The order number of the allocno corresponds to the index in the array. Removed allocnos have NULL element value.
Referenced by update_left_conflict_sizes_p().
int ira_allocnos_num |
The size of the previous array.
Sizes of the previous array.
Referenced by coalesced_pseudo_reg_slot_compare(), ira_create_object(), ira_reuse_stack_slot(), and process_bb_for_costs().
ira_loop_tree_node_t ira_bb_nodes |
All nodes representing basic blocks are referred through the following array. We can not use basic block member `aux' for this because it is used for insertion of insns on edges.
ira_copy_t* ira_copies |
Array of references to all copies. The order number of the copy corresponds to the index in the array. Removed copies have NULL element value.
int ira_copies_num |
Size of the previous array.
Referenced by print_allocno_prefs().
ira_loop_tree_node_t ira_curr_loop_tree_node |
ira-build.c
The current loop tree node and its regno allocno map.
The current loop tree node and its regno allocno map.
ira_allocno_t* ira_curr_regno_allocno_map |
Referenced by mark_pseudo_reg_live().
FILE* ira_dump_file |
Dump file of the allocator if it is not NULL.
Referenced by allocno_cost_compare_func(), bucket_allocno_compare_func(), build_conflict_bit_table(), collect_spilled_coalesced_allocnos(), ira_debug_live_range_list(), ira_loop_edge_freq(), modify_move_list(), move_unallocated_pseudos(), print_object_live_ranges(), process_bb_node_lives(), push_only_colorable(), and split_live_ranges_for_shrink_wrap().
live_range_t * ira_finish_point_ranges |
int ira_load_cost |
Referenced by emit_move_list(), and split_live_ranges_for_shrink_wrap().
ira_loop_tree_node_t ira_loop_nodes |
All nodes representing loops are referred through the following array.
int ira_loop_tree_height |
Height of the loop tree.
ira_loop_tree_node_t ira_loop_tree_root |
The root of the loop tree corresponding to the all function.
Referenced by add_copies(), fix_reg_equiv_init(), print_conflicts(), and process_bb_for_costs().
int ira_max_point |
Program points are enumerated by numbers from range 0..IRA_MAX_POINT-1. There are approximately two times more program points than insns. Program points are places in the program where liveness info can be changed. In most general case (there are more complicated cases too) some program points correspond to places where input operand dies and other ones correspond to places where output operands are born.
@verbatim
IRA processing allocno lives to build allocno live ranges. Copyright (C) 2006-2013 Free Software Foundation, Inc. Contributed by Vladimir Makarov vmaka. rov@ redha t.co m
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see http://www.gnu.org/licenses/.
The code in this file is similar to one in global but the code works on the allocno basis and creates live ranges instead of pseudo-register conflicts.
Program points are enumerated by numbers from range 0..IRA_MAX_POINT-1. There are approximately two times more program points than insns. Program points are places in the program where liveness info can be changed. In most general case (there are more complicated cases too) some program points correspond to places where input operand dies and other ones correspond to places where output operands are born.
Referenced by split_live_ranges_for_shrink_wrap().
int ira_mem_cost |
Referenced by split_live_ranges_for_shrink_wrap().
int ira_move_loops_num |
Referenced by modify_move_list(), and split_live_ranges_for_shrink_wrap().
ira_object_t* ira_object_id_map |
Map a conflict id to its corresponding ira_object structure.
Map a conflict id to its conflict record.
Referenced by dec_register_pressure(), process_bb_node_lives(), and propagate_copies().
int ira_objects_num |
The size of the previous array.
Count of conflict record structures we've created, used when creating a new conflict id.
Referenced by ira_print_live_range_list(), modify_move_list(), and update_bad_spill_attribute().
int ira_overall_cost |
Correspondingly overall cost of the allocation, cost of the allocnos assigned to hard-registers, cost of the allocnos assigned to memory, cost of loads, stores and register move insns generated for pseudo-register live range splitting (see ira-emit.c).
Correspondingly overall cost of the allocation, overall cost before reload, cost of the allocnos assigned to hard-registers, cost of the allocnos assigned to memory, cost of loads, stores and register move insns generated for pseudo-register live range splitting (see ira-emit.c).
Referenced by split_live_ranges_for_shrink_wrap().
ira_pref_t* ira_prefs |
Array of references to all allocno preferences. The order number of the preference corresponds to the index in the array.
int ira_prefs_num |
Size of the previous array.
int ira_reg_cost |
Referenced by split_live_ranges_for_shrink_wrap().
ira_allocno_t* ira_regno_allocno_map |
Map regno -> allocnos with given regno (see comments for allocno member `next_regno_allocno').
Referenced by coalesced_pseudo_reg_slot_compare(), ira_create_new_reg(), ira_reassign_pseudos(), merge_allocnos(), and slot_coalesced_allocno_live_ranges_intersect_p().
int ira_shuffle_cost |
Referenced by split_live_ranges_for_shrink_wrap().
struct ira_spilled_reg_stack_slot* ira_spilled_reg_stack_slots |
The following array contains info about spilled pseudo-registers stack slots used in current function so far.
int ira_spilled_reg_stack_slots_num |
The number of elements in the following array.
live_range_t* ira_start_point_ranges |
Arrays of size IRA_MAX_POINT mapping a program point to the allocno live ranges with given start/finish point.
int ira_store_cost |
Referenced by split_live_ranges_for_shrink_wrap().
int last_moveable_pseudo |
struct target_ira_int* this_target_ira_int |